456
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Nonplanar core structure of the screw dislocations in tantalum from the improved Peierls–Nabarro theory

&
Pages 484-516 | Received 28 Apr 2017, Accepted 20 Nov 2017, Published online: 07 Dec 2017

References

  • J. Christian, Some surprising features of the plastic deformation of body-centered cubic metals and alloys, Metall. Trans. A 14 (1983), pp. 1237–1256.
  • G. Taylor, Thermally-activated deformation of bcc metals and alloys, Prog. Mater. Sci. 36 (1992), pp. 29–61.
  • A. Seeger, The flow stress of high-purity refractory body-centred cubic metals and its modification by atomic defects, J. Phys. Paris IV 5 (1995), pp. C7–45.
  • W. Pichl, Slip geometry and plastic anisotropy of body-centered cubic metals, Phys. Status Solidi A 189 (2002), pp. 5–25.
  • M.S. Duesbery and V. Vitek, Plastic anisotropy in bcc transition metals, Acta Mater. 46 (1998), pp. 1481–1492.
  • P.B. Hirsch, A. Howie, and M.J. Whelan, A kinematical theory of diffraction contrast of electron transmission microscope images of dislocations and other defects, Philos. Trans. A 252 (1960), pp. 499–529.
  • W. Sigle, High-resolution electron microscopy and molecular dynamics study of the (a/2)[111] screw dislocation in molybdenum, Philos. Mag. A 79 (1999), pp. 1009–1020.
  • B. Mendis, Y. Mishin, C. Hartley, and K. Hemker, Use of the Nye tensor in analyzing HREM images of bcc screw dislocations, Philos. Mag. 86 (2006), pp. 4607–4640.
  • J.Y. Kim, D. Jang, and J.R. Greer, Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale, Acta Mater. 58 (2010), pp. 2355–2363.
  • P.D. Nellist, H. Yang, J.G. Lozano, T.J. Pennycook, and P.B. Hirsch, Stem optical sectioning for imaging screw displacements in dislocation core structures, Microsc. Microanal. 20 (2014), pp. 86–87.
  • L. Yang, P. Söderlind, and J.A. Moriarty, Accurate atomistic simulation of 1/2a〈111〉 screw dislocations and other defects in bcc tantalum, Philos. Mag. A 81 (2001), pp. 1355–1385.
  • V. Vitek, R. Perrin, and D. Bowen, The core structure of 1/2 (1\,1\,1) screw dislocations in bcc crystals, Philos. Mag. 21 (1970), pp. 1049–1073.
  • V. Vitek, Theory of the core structures of dislocations in bcc metals, Cryst. Lattice Defects 5 (1974), pp. 1–34.
  • Z. Basinski, M. Duesbery, and R. Taylor, Influence of shear stress on screw dislocations in a model sodium lattice, Can. J. Phys. 49 (1971), pp. 2160–2180.
  • A. Seeger and C. Wüthrich, Dislocation relaxation processes in body-centred cubic metals, Nuovo Cimento B (1971--1996). 33 (1976), pp. 38–75.
  • G. Ackland and R. Thetford, An improved n-body semi-empirical model for body-centred cubic transition metals, Philos. Mag. A 56 (1987), pp. 15–30.
  • R. Johnson and D. Oh, Analytic embedded atom method model for bcc metals, J. Mater. Res. 4 (1989), pp. 1195–1201.
  • L. Yang and J. Moriarty, Kink-pair mechanisms for a/2〈111〉 screw dislocation motion in bcc tantalum, Mater. Sci. Eng., A 319 (2001), pp. 124–129.
  • K. Ito and V. Vitek, Atomistic study of non-schmid effects in the plastic yielding of bcc metals, Philos. Mag. A 81 (2001), pp. 1387–1407.
  • C. Woodward and S. Rao, Ab-initio simulation of isolated screw dislocations in bcc mo and ta, Philos. Mag. A 81 (2001), pp. 1305–1316.
  • C. Woodward and S. Rao, Flexible ab initio boundary conditions: Simulating isolated dislocations in bcc mo and ta, Phys. Rev. Lett. 88 (2002), p. 216402.
  • C. Woodward, First-principles simulations of dislocation cores, Mater. Sci. Eng. A 400 (2005), pp. 59–67.
  • S. Ismail-Beigi and T. Arias, Ab initio study of screw dislocations in mo and ta: A new picture of plasticity in bcc transition metals, Phys. Rev. Lett. 84 (2000), p. 1499.
  • C.R. Weinberger, G.J. Tucker, and S.M. Foiles, Peierls potential of screw dislocations in bcc transition metals: Predictions from density functional theory, Phys. Rev. B. 87 (2013), p. 054114.
  • L. Dezerald, L. Ventelon, E. Clouet, C. Denoual, D. Rodney, and F. Willaime, Ab initio modeling of the two-dimensional energy landscape of screw dislocations in bcc transition metals, Phys. Rev. B 89 (2014), p. 024104.
  • L.M. Hale, J.A. Zimmerman, and C.R. Weinberger, Simulations of bcc tantalum screw dislocations: Why classical inter-atomic potentials predict {112} slip, Comput. Mater. Sci. 90 (2014), pp. 106–115.
  • J. Bassani, K. Ito, and V. Vitek, Complex macroscopic plastic flow arising from non-planar dislocation core structures, Mater. Sci. Eng., A 319 (2001), pp. 97–101.
  • G. Wang, A. Strachan, T. Cagin, and W.A. Goddard, Molecular dynamics simulations of 1/2a〈111〉 screw dislocation in ta, Mater. Sci. Eng., A 309 (2001), pp. 133–137.
  • G. Wang, A. Strachan, T. Çağın, and W.A. Goddard III, Atomistic simulations of kinks in 1/2a〈111〉 screw dislocations in bcc tantalum, Phys. Rev. B 68 (2003), p. 224101.
  • J. Li, C.Z. Wang, J.P. Chang, W. Cai, V.V. Bulatov, K.M. Ho, and S. Yip, Core energy and peierls stress of a screw dislocation in bcc molybdenum: A periodic-cell tight-binding study, Phys. Rev. B 70 (2004), p. 104113.
  • R. Gröger, A. Bailey, and V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2〈111〉; screw dislocations at 0k, Acta Mater. 56 (2008), pp. 5401–5411.
  • R. Gröger, V. Racherla, J. Bassani, and V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten: Ii. Yield criterion for single crystals based on atomistic studies of glide of 1/2〈111〉 screw dislocations, Acta Mater. 56 (2008), pp. 5412–5425.
  • R. Gröger and V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten. III. Effects of temperature and plastic strain rate, Acta Mater. 56 (2008), pp. 5426–5439.
  • E. Clouet, L. Ventelon, and F. Willaime, Dislocation core energies and core fields from first principles, Phys. Rev. Lett. 102 (2009), p. 055502.
  • E. Clouet, Dislocation core field. I. modeling in anisotropic linear elasticity theory. Phys. Rev. B. 84 (2011), p. 224111.
  • E. Clouet, L. Ventelon, and F. Willaime, Dislocation core field. II. Screw dislocation in iron, Phys. Rev. B 84 (2011), p. 224107.
  • L. Ventelon, F. Willaime, E. Clouet, and D. Rodney, Ab initio investigation of the peierls potential of screw dislocations in bcc fe and w, Acta Mater. 61 (2013), pp. 3973–3985.
  • V. Vitek, Intrinsic stacking faults in body-centred cubic crystals, Philos. Mag. 18 (1968), pp. 773–786.
  • V. Vitek, Core structure of screw dislocations in body-centred cubic metals: Relation to symmetry and interatomic bonding, Philos. Mag. 84 (2004), pp. 415–428.
  • V. Vitek and V. Paidar, Non-planar dislocation cores: A ubiquitous phenomenon affecting mechanical properties of crystalline materials, Dislocations Solids 14 (2008), pp. 439–514.
  • L. Lej\v{c}ek and F. Kroupa, Peierls nabarro model of nonplanar screw core, Czech. J. Phys. B 26 (1976), pp. 528–537.
  • H. Zhang, E. Mann, and A. Seeger, Approximate solution of the peierls equation for screw dislocations with threefold symmetry, Phys. Stat. Sol. (b) 153 (1989), pp. 465–477.
  • A.H.W. Ngan, A generalized peierls-nabarro model for nonplanar screw dislocation cores, J. Mech. Phys. Solids 45 (1997), pp. 903–921.
  • J.A. Yan, C.Y. Wang, and S.Y. Wang, Generalized-stacking-fault energy and dislocation properties in bcc fe: A first-principles study, Phys. Rev. B 70 (2004), p. 174105.
  • E. Clouet, S. Garruchet, and H. Nguyen, Dislocation interaction with c in a-fe: A comparison between atomic simulations and elasticity theory. Acta Mater. 56 (2008), pp. 3450–3460.
  • R. Liu, S. Wang, and X. Wu, The peierls stress of the moving 1/2〈111〉{110} screw dislocation in ta, J. Phys.: Condens. Matter 21 (2009), p. 345401.
  • S. Wang, N. Jiang, R. Wang, and Y. Zhou, Structure of screw dislocation core in Ta at high pressure, J. Appl. Phys. 115 (2014), p. 093505.
  • G. Lu, V.V. Bulatov, and N. Kioussis*, A nonplanar peierls-nabarro model and its application to dislocation cross-slip, Philos. Mag. 83 (2003), pp. 3539–3548.
  • S. Bobylev, T. Ishizaki, S. Kuramoto, and I. Ovid’ko, Theory of the nonplanar splitting of screw dislocations in gum metal, Phys. Rev. B 77 (2008), p. 094115.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, John Wiley & Sons, New York, 1982.
  • J. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1 (1953), pp. 153–162.
  • J. Eshelby, The continuum theory of lattice defects, Solid State Phys. 3 (1956), pp. 79–144.
  • E. Kröner, Continuum theory of defects, Phys. Defects 35 (1981), pp. 217–315.
  • A. Kadic and D.G. Edelen, A Gauge theory of dislocations and disclinations, in Gauge Theory of Dislocations and Disclinations Vol. 174, 1983.
  • F.R.N. Nabarro, Mathematical theory of stationary dislocations, Adv. Phys. 1 (1952), pp. 269–394.
  • G. Simmons and H. Wang, Single crystal elastic constants and calculated aggregate properties (1971).
  • R. Wang, S. Wang, X. Wu, and Y. Yao, The third-order elastic moduli and pressure derivatives for alre (re = y, pr, nd, tb, dy, ce) intermetallics with b2-structure: A first-principles study, Solid State Commun. 151 (2011), pp. 996–1000.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 78 (1996), pp. 1396–1396.
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), pp. 17953–17979.
  • G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996), pp. 11169–11186.
  • H.J. Monkhorst and J.D. Pack, Special points for brillouin-zone integrations, Phys. Rev. B 13 (1976), pp. 5188–5192.
  • W. Shaofeng, Lattice theory for structure of dislocations in a two-dimensional triangular crystal, Phys. Rev. B. 65 (2002), p. 094111.
  • S.F. Wang, A unified dislocation equation from lattice statics, J. Phys. A: Math. Theor. 42 (2008), p. 025208.
  • R. Peierls, The size of a dislocation, Proc. Phys. Soc. London 52 (1940), pp. 34–37.
  • S. Wang, The dislocation equation as a generalization of peierls equation, Philos. Mag. 95 (2015), pp. 3768–3784.
  • J.W.V. Vítek, Dislocations and stacking faults, Rep. Prog. Phys. 33 (1970), pp. 307–411.
  • J. Hartford, B. Von Sydow, G. Wahnström, and B. Lundqvist, Peierls barriers and stresses for edge dislocations in pd and al calculated from first principles, Phys. Rev. B 58 (1998), pp. 2487–2496.
  • X. Wu, R. Wang, and S. Wang, Generalized-stacking-fault energy and surface properties for hcp metals: A first-principles study, Appl. Surf. Sci. 256 (2010), pp. 3409–3412.
  • X.Z. Wu, R. Wang, S.F. Wang, and Q.Y. Wei, Ab initio calculations of generalized-stacking-fault energy surfaces and surface energies for fcc metals, Appl. Surf. Sci. 256 (2010), pp. 6345–6349.
  • X. Wu and S. Wang, Application of parametric derivation method to the calculation of peierls energy and peierls stress in lattice theory, Acta Mech. Solida Sin. 20 (2007), pp. 363–368.
  • S.L. Frederiksen and K.W. Jacobsen, Density functional theory studies of screw dislocation core structures in bcc metals, Philos. Mag. 83 (2003), pp. 365–375.
  • Y.P. Pellegrini, Equation of motion and subsonic-transonic transitions of rectilinear edge dislocations: A collective-variable approach, Phys. Rev. B 90 (2014), p. 054120.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.