608
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Correlative atomic scale characterisation of secondary carbides in M50 bearing steel

, , , , &
Pages 766-782 | Received 12 Apr 2017, Accepted 23 Nov 2017, Published online: 07 Dec 2017

References

  • J. Gegner, Tribological aspects of rolling bearing failures. Tribology – Lubricants and Lubrication, K.Chang-Hung, ed. InTech, Rijeka 2011, pp. 33–94.
  • H. Bhadeshia, Steels for bearings, Prog. Mater. Sci. 57(2011) (2011), pp. 268–435.
  • M.A. Stopher and P.E.J. Rivera-Diaz-del-Castillo, Hydrogen embrittlement in bearing steels, Mater. Sci. Tech. 32 (2016), pp. 1–10.
  • J. Ciruna and H. Szieleit, The effect of hydrogen on the rolling contact fatigue life of AISI 52100 and 440C steel balls, Wear 24 (1973), pp. 107–118.10.1016/0043-1648(73)90207-X
  • B. Allison, Evolution of mechanical properties of M50 bearing steel due to rolling contact fatigue, University of Florida, Ph.D. diss., 2013.
  • I.M. Robertson, P. Sofronis, A. Nagao, M.L. Martin, S. Wang, D.W. Gross, and K.E. Nygren, Hydrogen embrittlement understood, Metall. Mater. Trans. B 46 (2015), pp. 1085–1103.10.1007/s11663-015-0325-y
  • W.H. Johnson, On some remarkable changes produced in iron and steel by the action of hydrogen and acids, Proc. R. Soc. London 23 (1874), pp. 168–179.10.1098/rspl.1874.0024
  • H. Bhadeshia, Prevention of hydrogen embrittlement in steels, ISIJ Int. 56 (2016), pp. 24–36.10.2355/isijinternational.ISIJINT-2015-430
  • R. Oriani, The diffusion and trapping of hydrogen in steel, Acta Metall. 18 (1970), pp. 147–157.10.1016/0001-6160(70)90078-7
  • G.M. Pressouyre, Hydrogen traps, repellers, and obstacles in steel; consequences on hydrogen diffusion, solubility, and embrittlement, Metall. Trans. A 14 (1983), pp. 2189–2193.10.1007/BF02662391
  • B.A. Szost, R.H. Vegter, and P.E.J. Rivera-Diaz-del Castillo, Developing bearing steels combining hydrogen resistance and improved hardness, Mater. Des. 33 (2012), pp. 499–506.
  • T. Nishikawa, N. Hayashi, and A. Hayakawa, Technical trend of aircraft bearings, NTN Tech. Revi. 82 (2014), pp. 83–87.
  • C. Feng, G. Chow, S. Rangarajan, X. Chen, K. Gonsalves, and C. Law, TEM and HRTEM characterization of nanostructured M50 type steel, Nanostruct. Mater. 8 (1997), pp. 45–54.10.1016/S0965-9773(97)00064-0
  • K. Stiller, L.-E. Svensson, P. Howell, W. Rong, H.-O. Andrén, and G. Dunlop, High resolution microanalytical study of precipitation in a powder metallurgical high speed steel, Acta Metall. 32 (1984), pp. 1457–1467.10.1016/0001-6160(84)90092-0
  • H. Fischmeister, S. Karagöz, and H. Andrén, An atom probe study of secondary hardening in high speed steels, Acta Metall. 36 (1988), pp. 817–825.10.1016/0001-6160(88)90136-8
  • H. Andrén, S. Karagöz, C. Guangjun, L. Lundin, and H. Fischmeister, Carbide precipitation in chromium steels, Surf. Sci. 246 (1991), pp. 246–251.10.1016/0039-6028(91)90422-O
  • T. Kinkus and G. Olson, Microanalytical evaluation of a prototype stainless bearing steel, Surf. Sci. 266 (1992), pp. 391–396.10.1016/0039-6028(92)91051-C
  • R. Thomson, Characterization of carbides in steels using atom probe field-ion microscopy, Mater. Char. 44 (2000), pp. 219–233.10.1016/S1044-5803(99)00061-3
  • J.-H. Kang and P. Rivera-Diaz-del Castillo, Carbide dissolution in bearing steels, Comp. Mater. Sci. 67 (2013), pp. 364–372.10.1016/j.commatsci.2012.09.022
  • A.T.W. Barrow and P.E.J. Rivera-Diaz-Del-Castillo, Nanoprecipitation in bearing steels, Acta Mater. 59 (2011), pp. 7155–7167.10.1016/j.actamat.2011.08.007
  • J.E. Bridge, G.N. Maniar, and T.V. Philip, Carbides in M-50 high speed steel, Metall. Trans. 2 (1971), pp. 2209–2214.10.1007/BF02917552
  • T. Baker, Processes, microstructure and properties of vanadium microalloyed steels, Mater. Sci. Tech. 25 (2009), pp. 1083–1107.10.1179/174328409X453253
  • S. Yamasaki and H.K.D.H. Bhadeshia, Modelling and characterisation of V4C3 precipitation and cementite dissolution during tempering of Fe-C-V martensitic steel, Mater. Sci. Tech. 19 (2003), pp. 1335–1343.10.1179/026708303225005971
  • J. Takahashi, K. Kawakami, and T. Tarui, Direct observation of hydrogen-trapping sites in vanadium carbide precipitation steel by atom probe tomography, Scripta Mater. 67 (2012), pp. 213–216.10.1016/j.scriptamat.2012.04.022
  • W. Rong, H. Andrén, H. Wisell, and G. Dunlop, The role of alloy composition in the precipitation behaviour of high speed steels, Acta Metall. Mater. 40 (1992), pp. 1727–1738.10.1016/0956-7151(92)90116-V
  • B. Gault, M.P. Moody, J.M. Cairney, and S.P. Ringer, Atom Probe Microscopy, Springer, New York, 2012.10.1007/978-1-4614-3436-8
  • B.A. Szost and R.H. Vegter, Hydrogen-trapping mechanisms in nanostructured steels, Metall. Mater. Trans. A 44 (2013), pp. 4542–4550.10.1007/s11661-013-1795-7
  • D. Brandon and W.D. Kaplan, Microstructural characterization of materials, 2nd ed., Springer, New York, 2008.10.1002/9780470727133
  • H.S. Kitaguchi, S. Lozano-Perez, and M.P. Moody, Quantitative analysis of carbon in cementite using pulsed laser atom probe, Ultramicroscopy 147 (2014), pp. 51–60.10.1016/j.ultramic.2014.06.004
  • B. Gault, D. Haley, F. de Geuser, M.P. Moody, E. Marquis, D. Larson, and B. Geiser, Advances in the reconstruction of atom probe tomography data, Ultramicroscopy 111 (2011), pp. 448–457.10.1016/j.ultramic.2010.11.016
  • P. Stadelmann, JEMS, Software available at http://www.jems-saas.ch.
  • I. Wood, L. Vocadlo, K. Knight, D. Dobson, W. Marshall, G. Price, and J. Brodholt, Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction, J. Appl. Cryst. 37 (2004). pp. 82–90.
  • N. Zhong, X. Wang, Z. Guo, and Y. Rong, Orientation relationships between ferrite and cementite by edge-to-edge matching principle, J. Mater. Sci. Tech. 27 (2011), pp. 475–480.10.1016/S1005-0302(11)60094-7
  • L. Zhang, Tempering of martensite, Ph.D. diss., University of Oxford, 1985.
  • M. Perez, C. Sidoroff, A. Vincent, and C. Esnouf, Microstructural evolution of martensitic 100Cr6 bearing steel during tempering: From thermoelectric power measurements to the prediction of dimensional changes, Acta Mater. 57 (2009), pp. 3170–3181.10.1016/j.actamat.2009.03.024
  • Y. Hirotsu and S. Nagakura, Crystal structure and morphology of the carbide precipitated from martensitic high carbon steel during the first stage of tempering, Acta Metall. 20 (1972), pp. 645–655.10.1016/0001-6160(72)90020-X
  • R. Lagneborg, T. Siwecki, S. Zajac, and B. Hutchinson, The role of vanadium in microalloyed steels, Scand. J. Metall. 28 (1999), pp. 186–241.
  • S. Yamasaki and H. Bhadeshia, M4C3 precipitation in Fe–C–Mo–V steels and relationship to hydrogen trapping, Proc. R. Soc. A 462 (2006), pp. 2315–2330.10.1098/rspa.2006.1688
  • S. Yamasaki and H.K.D.H. Bhadeshia, Modelling and characterisation of Mo2C precipitation and cementite dissolution during tempering of FeCMo martensitic steel, Mater. Sci. Tech. 19 (2003), pp. 723–731.10.1179/026708303225002929
  • K. Madhav Reddy, T.N. Rao, J. Revathi, and J. Joardar, Structural stability of α/β-Mo2C during thermochemical processing, J. Alloys Compd. 494 (2010), pp. 386–391.10.1016/j.jallcom.2010.01.055
  • ESPI Metals, Molybdenum Carbide Mo2C, 2016. Available at http://www.espimetals.com/index.php/msds/675-molybdenum-carbide-mo2c
  • M. Grujicic, Design of M2C carbides for secondary hardening, in Innovations in Ultrahigh strength Steel Technology, Proceedings of 34th Sagamore Army Research Conference, G. B. Olson, M. Azrin, and E. S. Wright eds., U.S. Army Laboratory Command, Materials Technology Laboratory, 1990, pp. 223–237.
  • J. Takahashi, K. Kawakami, Y. Kobayashi, Quantitative analysis of carbon content in cementite in steel by atom probe tomography, Ultramicroscopy 111 (2011), pp. 1233–1238.
  • W. Sha, L. Chang, G. Smith, L. Cheng, and E. Mittemeijer, Some aspects of atom-probe analysis of Fe–C and Fe–N systems, Surf. Sci. 266 (1992), pp. 416–423.10.1016/0039-6028(92)91055-G
  • M. Thuvander, J. Weidow, J. Angseryd, L.K.L. Falk, F. Liu, M. Sonestedt, K. Stiller, and H.-O. Andrén, Quantitative atom probe analysis of carbides, Ultramicroscopy 111 (2011), pp. 604–608.10.1016/j.ultramic.2010.12.024
  • J. Akré, F. Danoix, H. Leitner, and P. Auger, The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM, Ultramicroscopy 109 (2009), pp. 518–523.10.1016/j.ultramic.2008.11.010
  • G. Da Costa, F. Vurpillot, A. Bostel, M. Bouet, and B. Deconihout, Design of a delay-line position-sensitive detector with improved performance, Rev. Sci. Instrum. 76 (2005), p. 013304.10.1063/1.1829975
  • M. Herbig, D. Raabe, Y.J. Li, P. Choi, S. Zaefferer, and S. Goto, Atomic-scale quantification of grain boundary segregation in nanocrystalline material, Phys. Rev. Lett. 112 (2014), p. 126103.
  • A.J. London, S. Lozano-Perez, M.P. Moody, S. Amirthapandian, B.K. Panigrahi, C.S. Sundar, and C.R.M. Grovenor, Quantification of oxide particle composition in model oxide dispersion strengthened steel alloys, Ultramicroscopy 159 (2015), pp. 360–367.10.1016/j.ultramic.2015.02.013
  • M. Meisnar, M.P. Moody, and S. Lozano-Perez, Atom probe tomography of stress corrosion crack tips in SUS316 stainless steels, Corros. Sci 98 (2015), pp. 661–671.10.1016/j.corsci.2015.06.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.