244
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Vacancy-like defects in nanocrystalline SnO2: influence of the annealing treatment under different atmospheres

, , , &
Pages 673-692 | Received 18 Oct 2016, Accepted 05 Dec 2017, Published online: 20 Dec 2017

References

  • M.J. Madou and R. Morrison (eds.), Chemical Sensing With Solid State Devices, Academic Press, San Diego, CA, 1989.
  • M.A. Ponce, C.M. Aldao, and M.S. Castro, Influence of particle size on the conductance of SnO2 thick films, J. Eur. Ceram. Soc. 23 (2003), pp. 2105–2111.10.1016/S0955-2219(03)00037-2
  • X. Wang, S.S. Yee, and W.P. Carey, Transition between neck-controlled and grain-boundary-controlled sensitivity of metal-oxide gas sensors, Sens. Actuators B, Chem. 25 (1995), pp. 454–457.
  • N. Barsan and U. Weimar, Conduction model of metal oxide gas sensors, J. Electroceram. 7 (2001), pp. 143–167.10.1023/A:1014405811371
  • M. Batzill and U. Diebold, The surface and materials science of tin oxide, Prog. Surf. Sci. 79 (2005), pp. 47–154.
  • S.M. Sze (ed.), Physics of Semiconductor Devices, Wiley, New York, NY, 1981.
  • K. Kao (ed.), Dielectric Phenomena in Solids, Elsevier Academic Press, San Diego, CA, 2004.
  • C. Malagù, V. Guidi, M.C. Carotta, and G. Martinelli, Unpinning of Fermi level in nanocrystalline semiconductors, Appl. Phys. Lett. 84 (2004), pp. 4158–4160.
  • P. Hautojärvi and C. Corbel, Positron spectroscopy of defects in metals and semiconductors, in Positron Spectroscopy of Solids, International School of Physics «Enrico Fermi», Course CXXV, A. Dupasquier and A.P. Mills Jr., eds., IOS Press, Amsterdam, 1995, p. 491.
  • R. Krause-Rehberg and H.S. Leipner (eds.), Positron Annihilation in Semiconductors: (Defect Studies, Springer Series in Solid State Science), Springer, Berlin, 1999.
  • F. Tuomisto and I. Makkonen, Defect identification in semiconductors with positron annihilation: Experiment and theory, Rev. Mod. Phys. 85 (2013), pp. 1583–1631.10.1103/RevModPhys.85.1583
  • F. Tuomisto, V. Ranki, K. Saarinen, and D.C. Look, Evidence of the Zn vacancy acting as the dominant acceptor in n-type ZnO, Phys. Rev. Lett. 91 (2003), pp. 205502:1–4
  • I. Makkonen, E. Korhonen, V. Prozheeva, and F. Tuomisto, Identification of vacancy defect complexes in transparent semiconducting oxides ZnO, In2O3 and SnO2, J. Phys.: Condensed Matter 28 (2016), pp. 224002:1–7.
  • G. Brauer, W. Anwand, W. Skorupa, J. Kuriplach, O. Melikhova, C. Moisson, H. von Wenckstern, H. Schmidt, M. Lorenz, and M Grundmann, Defects in virgin and N+-implanted ZnO single crystals studied by positron annihilation, Hall effect, and deep-level transient spectroscopy, Phys. Rev. B. 74 (2006), pp. 045208:1–10
  • C.H. Shek, J.K.L. Lai, and G.M. Lin, Investigation of interface defects in nanocrystalline SnO2 by positron annihilation, J. Phys. Chem. Solids 60 (1999), pp. 189–193.10.1016/S0022-3697(98)00269-8
  • P.R. Guagliardo, E.R. Vance, Z. Zhang, J. Davis, J.F. Williams, and S.N. Samarin, Positron annihilation lifetime studies of Nb-doped TiO2, SnO2, and ZrO2, J. Am Ceram. Soc. 95 (2012), pp. 1727–1731.10.1111/jace.2012.95.issue-5
  • J. Čížek, O. Melikhova, I. Procházka, J. Kuriplach, R. Kužel, G. Brauer, W. Anw, T.E. Konstantinova, and I.A. Danilenko, Defect studies of nanocrystalline zirconia powders and sintered ceramics Phys. Rev. B 81 (2010), pp. 024116:1–19.
  • M.A. Ponce, C. Macchi, F. Schipani, C.M. Aldao, and A. Somoza, Mild degradation processes in ZnO-based varistors: The role of Zn vacancies, Phil. Mag. 95 (2015), pp. 730–743.
  • C. Buono, D.A. Mirabella, and C.M. Aldao, Sensitivity of metal oxide gas sensors to non-parabolic intergranular barriers. Sens Actuators B, Chem. 246 (2017), pp. 1025–1029.
  • P.M. Desimone, C.G. Díaz, J.P. Tomba, C.M. Aldao, and M.A. Ponce, Reversible metallization of SnO2 films under hydrogen and oxygen containing atmospheres, J. Mater. Sci. 51 (2016), pp. 4451–4461.10.1007/s10853-016-9757-2
  • F. Schipani, M.A. Ponce, E. Joanni, F.J. Williams, and C.M. Aldao, Study of the oxygen vacancies changes in SnO2 polycrystalline thick films using impedance and photoemission spectroscopies, J. Appl. Phys. 116 (2014), pp. 194502:1–8.
  • I.I.C.f.D. Data, Powder Diffraction File Database, EEUU, Newtown Square, 1998.
  • C.M. Aldao, F. Schipani, M.A. Ponce, E. Joanni, and F.J. Williams, Conductivity in SnO2 polycrystalline thick film gas sensors: Tunneling electron transport and oxygen diffusion, Sens. Actuators B, Chem. 193 (2014), pp. 428–433.10.1016/j.snb.2013.11.114
  • P. Kirkegaard, N.J. Pedersen, and M. Eldrup, PATFIT-88 program, Tech. Rep. M-2740, Risoe National Laboratory, Roskilde, Denmark, 1989.
  • K. MacKenzie, Experimental methods of annihilation time and energy spectrometry, in Positron Solid-State Physics, International School of Physics «Enrico Fermi», Course LXXXIII, W. Brandt and A. Dupasquier, eds., North-Holland, Amsterdam, 1983, pp. 196–264.
  • T.G.G. Maffeïs, G.T. Owen, C. Malagù, G. Martinelli, M.K. Kennedy, F.E. Kruis, and S.P. Wilks, Direct evidence of the dependence of surface state density on the size of SnO2 nanoparticles observed by scanning tunnelling spectroscopy, Surf. Sci. 550 (2004), pp. 21–25.10.1016/j.susc.2003.11.041
  • C. Malagù, G. Martinelli, M.A. Ponce, and C.M. Aldao, Unpinning of the Fermi level and tunneling in metal oxide semiconductors, Appl. Phys. Lett. 92 (2008), pp. 162104: 1–3.
  • T. Pagnier, M. Boulova, N. Sergent, P. Bouvier, and G. Lucazeau, Nanopowders and nanostructured oxides: Phase transitions and surface reactivity, J. Raman Spectrosc. 38 (2007), pp. 756–761.10.1002/(ISSN)1097-4555
  • J.X. Wang, D.F. Liu, X.Q. Yan, H.J. Yuan, L.J. Ci, Z.P. Zhou, Y. Gao, L. Song, L.F. Liu, W.Y. Zhou, G. Wang, and S.S. Xie, Growth of SnO2 nanowires with uniform branched structures, Solid State Commun. 130 (2004), pp. 89–94.10.1016/j.ssc.2004.01.003
  • M. Ristić, M. Ivanda, S. Popović, and S. Musić, Dependence of nanocrystalline SnO2 particle size on synthesis route, J. Non-Cryst. Solids 303 (2002), pp. 270–280.10.1016/S0022-3093(02)00944-4
  • S.H. Sun, G.W. Meng, G.X. Zhang, T. Gao, B.Y. Geng, L.D. Zhang, and J. Zuo, Raman scattering study of rutile SnO2 nanobelts synthesized by thermal evaporation of Sn powders, Chem. Phys. Lett. 376 (2003), pp. 103–107.
  • O.M. Berengue, R.A. Simon, A.J. Chiquito, C.J. Dalmaschio, E.R. Leite, H.A. Guerreiro, and F.E.G. Guimarães, Semiconducting Sn3O4 nanobelts: Growth and electronic structure J. Appl. Phys. 107 (2010), pp. 033717: 1–4
  • K.K. Nanda and S.N. Sahu, Study of CdS nanocrystallites by AFM and Raman scattering spectroscopy, Appl. Surf. Sci. 119 (1997), pp. 50–54.10.1016/S0169-4332(97)00177-3
  • S. Ushioda, A. Aziza, J.B. Valdez, and G. Mattei, Effects of surface roughness on surface polaritons, Phys. Rev. B 19 (1979), pp. 4012–4019.10.1103/PhysRevB.19.4012
  • R. Fukasawa, M. Wakaki, K. Ohta, and H. Okumura, Raman scattering determination of free carrier concentration and surface depletion layer in (100) p-GaAs grown by molecular-beam epitaxy, Jpn. J. Appl. Phys. 25 (1986), pp. 652–653.10.1143/JJAP.25.652
  • G. Abstreiter, E. Bauser, A. Fisher, and K. Ploog, Raman spectroscopy – A versatile tool for characterization of thin films and heterostructures of GaAs and AlxGa1−xAs, Appl. Phys. 16 (1978), pp. 345–352.
  • J. Zuo, C. Xu, X. Liu, and C. Wang, Study of the Raman spectrum of nanometer SnO2, J. Appl. Phys. 75 (1994), pp. 1835–1836.10.1063/1.356348
  • J. Xu, Y. Li, H. Huang, Y. Zhu, Z. Wang, Z. Xie, X. Wang, D. Chen, and G. Shen, Synthesis, characterizations and improved gas-sensing performance of SnO2 nanospike arrays, J. Mater. Chem. 21 (2011), pp. 19086–19092.10.1039/c1jm13350 k
  • L.M. Sharygin and S.M. Vovk, Raman spectroscopy studies of structural changes in hydrated titanium and tin dioxide gels under drying, J. Appl. Spectrosc. 64 (1997), pp. 283–286.10.1007/BF02675157
  • P. Hautojärvi (ed.), Positrons in Solids. Vol. 12. Topics in Current Physics, Springer, Berlin Heidelberg, 1979.
  • H.E. Schaefer, R. Würschum, R. Birringer, and H. Gleiter, Structure of nanometer-sized polycrystalline iron investigated by positron lifetime spectroscopy, Phys. Rev. B 38 (1988), pp. 9545–9554.10.1103/PhysRevB.38.9545
  • R. Checchetto, N. Bazzanella, A. Kale, A. Miotello, S. Mariazzi, R.S. Brusa, P. Mengucci, C. Macchi, A. Somoza, W. Egger, and L. Ravelli, Enhanced kinetics of hydride-metal phase transition in magnesium by vacancy clustering, Phys. Rev. B 84 (2011), pp. 054115: 1–7.
  • C. Macchi, C. Maurizio, R. Checchetto, S. Mariazzi, L. Ravelli, W. Egger, P. Mengucci, N. Bazzanella, A. Miotello, A. Somoza, and R.S. Brusa, Niobium aggregation and vacancylike defect evolution in nanostructured Nb-doped Mg: Their role in the kinetics of the hydride-to-metal phase transformation Phys. Rev. B 85 (2012), pp. 214117: 1–19
  • A. Dupasquier, R. Romero, and A. Somoza, Positron trapping at grain boundaries, Phys. Rev. B 48 (1993), pp. 9235–9245.10.1103/PhysRevB.48.9235
  • M.A. Ponce, C. Malagù, M.C. Carotta, G. Martinelli, and C.M. Aldao, Gas indiffusion contribution to impedance in tin oxide thick films, J. Appl. Phys. 104 (2008), pp.054907: 1–5.
  • C. Malagù, M.C. Carotta, A. Giberti, V. Guidi, G. Martinelli, M.A. Ponce, M.S. Castro, and C.M. Aldao, Two mechanisms of conduction in polycrystalline SnO2, Sens. Actuators B Chem. 136 (2009), pp. 230–234.10.1016/j.snb.2008.10.015
  • R. Savu, M.A. Ponce, E. Joanni, P.R. Bueno, M.S. Castro, M. Cilense, E. Longo, and J.A. Varela, Grain size effect on the electrical response of SnO2 thin and thick film gas sensors, Mater. Res. 12 (2009), pp. 85–89.
  • J.H.C. van Hooff and J.F. van Helden, Formation of peroxo radicals on tin dioxide, J. Catal. 8 (1967), pp. 199–200.10.1016/0021-9517(67)90304-1
  • J.H.C. van Hooff, Formation of paramagnetic surface species during the oxidation of nonstoichiometric TiO2(A), SnO2, and ZnO, J. Catal. 11 (1968), pp. 277–279.10.1016/0021-9517(68)90047-X
  • P. Meriaudeau, C. Naccache, and A. Tench, Paramagnetic oxygen species adsorbed on reduced SnO2, J. Catal. 21 (1971), pp. 208–211.10.1016/0021-9517(71)90139-4
  • C. Hauser, Considerations on oxygen paramagnetic centres adsorbed on TiO2 and SnO2, Chem. Phys. Lett. 18 (1973), pp. 205–208.
  • Y. Mizokawa and S. Nakamura, ESR study of adsorbed oxygen on tin dioxide, Oyo Buturi. 46 (1977), pp. 580–584. (in Japanese).
  • S.C. Chang, Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements, J. Vac. Sci. Technol. 17 (1980), pp. 366–369.10.1116/1.570389
  • C. Malagù, A. Giberti, S. Morandi, and C.M. Aldao, Electrical and spectroscopic analysis in nanostructured SnO2: ‘Long-term’ resistance drift is due to in-diffusion, J. Appl. Phys. 110(093711) (2011), pp. 1–4.
  • B. Kamp, R. Merkle, R. Lauck, and J. Maier, Chemical diffusion of oxygen in tin dioxide: Effects of dopants and oxygen partial pressure, J. Solid State Chem. 178 (2005), pp. 3027–3039.10.1016/j.jssc.2005.07.019
  • M.A. Ponce, M.S. Castro, and C.M. Aldao, Capacitance and resistance measurements of SnO2 thick-films, J. Mater. Sci: Mater Electron 20 (2009), pp. 25–32.
  • A.Z. Sadek, S. Choopun, W. Wlodarski, S.J. Ippolito, and K. Kalantar-zadeh, Characterization of ZnO nanobelt-based gas sensor for H2, NO2, and hydrocarbon, Sens. IEEE Sens. J. 7 (2007), pp. 919–924.10.1109/JSEN.2007.895963
  • P.M. Desimone, C.G. Díaz, J.P. Tomba, C.M. Aldao, and M.A. Ponce, Reversible metallization of SnO2 films under hydrogen and oxygen containing atmospheres, J. Mater. Sci. 51 (2016), pp. 4451–4461.10.1007/s10853-016-9757-2
  • F. Schipani, D.R. Miller, M.A. Ponce, C.M. Aldao, S.A. Akbar, and P.A. Morris, Electrical characterization of semiconductor oxide-based gas sensors using impedance spectroscopy: A review, Rev. Adv. Sci. Eng. 5 (2016), pp. 86–105.
  • N. Barsan, D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to?, Sens. Actuators B 121 (2007), pp. 18–35.10.1016/j.snb.2006.09.047
  • S. Lany and A. Zunger, Dopability, intrinsic conductivity, and nonstoichiometry of transparent conducting oxides, Phys. Rev. Lett. 98(045501) (2007), pp. 1–4.
  • S.B. Zhang, S.H. Wei, and A. Zunger, A phenomenological model for systematization and prediction of doping limits in II–VI and I-III–VI2 compounds, J. Appl. Phys. 83 (1998), pp. 3192–3196.10.1063/1.367120

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.