264
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Electronic structure and glass forming ability in early and late transition metal alloys

, , , , &
Pages 693-709 | Received 18 Sep 2017, Accepted 06 Dec 2017, Published online: 18 Dec 2017

References

  • R. Ristić, K. Zadro, D. Pajić, I.A. Figueroa, and E. Babić, On the origin of bulk glass forming ability in Cu–Hf, Zr alloys, EPL 114 (2016), pp. 17006-p1–17006-p6.
  • L. Wondraczek, J.C. Mauro, Advancing glasses through fundamental research, Int. J. Appl. Glass Sci. 29 (2009), pp. 1227–1234.
  • J.C. Mauro, A.J. Ellison, D.C. Allan, and M.M. Smedskjaer, Advancing glasses through fundamental research, Int. J. Appl. Glass Sci. 4 (2013), pp. 408–413.
  • E. Babić, A. Kuršumović, Ž. Marohnić, and J. Horvat, Metallic glasses: science and technology, in Proceedings of Joint EC-Yugoslavia Colloquium on Advanced Materials, M.D. Rodgers and J. Jovičević, eds., Office for Official Publication of EC, Luxembourg, 1989, pp. 210–234.
  • J. Schroers, Bulk metallic glasses, Phys. Today 66 (2013), pp. 32–37.
  • Y.Q. Cheng and E. Ma, Atomic-level structure and structure–property relationship in metallic glasses, Prog. Mater. Sci. 56 (2011), pp. 379–473.
  • W.H. Wang, The elastic properties, elastic models and elastic perspectives of metallic glasses, Prog. Mater. Sci. 57 (2012), pp. 487–656.
  • W. Götze, Complex Dynamics of Glass Forming Liquids: A Mode-Coupling Theory, Oxford University Press, Oxford, 2008.
  • P.G. Debenedetti and F.H. Stillinger, Supercooled liquids and the glass transition, Nature 410 (2001), pp. 259–267.
  • L. Berthier and G. Birroli, Theoretical perspective on the glass transition and amorphous materials, Rev. Mod. Phys. 83 (2011), pp. 587–645.
  • L. Berthier and M.D. Ediger, Facets of glass physics, Phy. Today 69 (2016), pp. 40–46.
  • A.L. Greer, Metallic glasses, Science 267 (1995), pp. 1947–1953.
  • W.L. Johnson, Bulk glass-forming metallic alloys: science and technology, MRS Bull. 24 (1999), pp. 42–56.
  • A. Inoue and A. Takeuchi, Recent development and application products of bulk glassy alloys, Acta Mater. 59 (2011), pp. 2243–2267 and references therein.10.1016/j.actamat.2010.11.027
  • M.H. Cohen and D. Turnbull, Composition requirements for glass formation in metallic and ionic systems, Nature 189 (1961), pp. 131–132.10.1038/189131b0
  • W. Klement, R.M. Wilens, and P. Duwez, Non-crystalline structure in solidified gold–silicon alloys, Nature 187 (1960), pp. 869–870.10.1038/187869b0
  • T. Zhang, A. Inoue, and T. Masumoto, Amorphous Zr–Al–TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K, Mater. Trans. JIM 32 (1991), pp. 1005–1010.10.2320/matertrans1989.32.1005
  • A. Peker and W.L. Johnson, A highly processible metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett. 63 (1993), pp. 2342–2344.10.1063/1.110520
  • D. Turnbull, Under what conditions can a glass be formed?, Contemp. Phys. 10 (1969), pp. 473–488.10.1080/00107516908204405
  • C. Suryanarayana, I. Seki, and A. Inoue, A critical analysis of the glass-forming ability of alloys, J. Non-Cryst. Solids 355 (2009), pp. 355–360.10.1016/j.jnoncrysol.2008.12.009
  • Y.F. Ye, X.D. Liu, S. Wang, C.T. Liu, and Y. Yang, The general effect of atomic size misfit on glass formation in conventional and high-entropy alloys, Intermetallics 78 (2016), pp. 30–41.10.1016/j.intermet.2016.08.005
  • L. Xia, K.C. Chan, S.K. Kwok, and Y.D. Dong, Formation of Metastable Phases and Their Effect on the Glass-Forming Ability of Cu–Hf Binary Alloys, Mater. Trans. 51 (2010), pp. 68–71.
  • L. Xia, S.S. Fang, Q. Wang, Y.D. Dong, and C.T. Liu, Thermodynamic modeling of glass formation in metallic glasses, Appl. Phys. Lett. 88 (2006), pp. 1711905-1-3.
  • J.A. Alonso, L.J. Gallego, and J.M. Lopez, Glass formation in binary alloy systems: A prediction of the composition range?, Phil. Mag. A 58 (1988), pp. 79–92.
  • O.J. Kwon, Y.C. Kim, K.B. Kim, Y.K. Lee, and E. Fleury, Formation of amorphous phase in the binary Cu−Zr alloy system, Metals Mater. Int. 12 (2006), pp. 207–212.
  • T. Egami and Y. Waseda, Atomic size effect on the formability of metallic glasses, J. Non-Cryst. Solids 64 (1984), pp. 113–134.
  • T. Zhang, A. Inoue, and T. Matsumoto, The effect of atomic size on the stability of supercooled liquid for amorphous (TiZrHf)65Ni25Al10 and (TiZrHf)65Cu25Al10, Mater. Lett. 15 (1993), pp. 379–382.
  • A. Inoue, Stabilization of metallic supercooled liquid and bulk amorphous alloys, Acta Mater. 48 (2000), pp. 279–306.
  • S.R. Nagel and J. Tauc, Nearly-free-electron approach to the theory of metallic glass alloys, Phys. Rev. Lett. 35 (1975), pp. 380–383.10.1103/PhysRevLett.35.380
  • R. Ristić, J.R. Cooper, K. Zadro, D. Pajić, J. Ivkov, and E. Babić, Ideal solution behaviour of glassy Cu–Ti, Zr, Hf alloys and properties of amorphous copper, J. Alloys Compd. 621 (2015), pp. 136–145.
  • R. Ristić, E. Babić, M. Stubičar, A. Kuršumović, J.R. Cooper, I.A. Figueroa, H.A. Davies, I. Todd, L.K. Varga, and I. Bakonyi, Simple correlation between mechanical and thermal properties in TE–TL (TE=Ti, Zr, Hf;TL=Ni, Cu) amorphous alloys, J. Non-Cryst. Solids 357 (2011), pp. 2949–2953.
  • R. Ristić, E. Babić, D. Pajić, K. Zadro, A. Kuršumović, I.A. Figueroa, H.A. Davies, I. Todd, L.K. Varga, and I. Bakonyi, Properties and atomic structure of amorphous early transition metals, J. Alloys Compd. 504S (2010), pp. S194–S197.
  • R. Ristić, E. Babić, D. Pajić, K. Zadro, I.A. Figueroa, H.A. Davies, I. Todd, A. Kuršumović, and M. Stubičar, Mechanical and magnetic properties of Cu55Hf45−xTix metallic glasses, Solid State Commun. 151 (2011), pp. 1014–1017.
  • G. Remenyi, K. Biljaković, D. Starešinić, D. Dominko, R. Ristić, E. Babić, I.A. Figueroa, and H.A. Davies, Looking for footprint of bulk metallic glass in electronic and phonon heat capacities of Cu55Hf45-xTix alloys, Appl. Phys. Lett. 104 (2014), pp. 171906-1-4.
  • I.A. Figueroa, Thermal properties of Cu–Hf-Ti metallic glass compositions, Phys. Mat. Res. Soc. Symp. Proc. 1485 (2013), pp. 155–160.
  • W.L. Johnson, J.H. Na, and M.D. Demetriou, Quantifying the origin of metallic glass formation, Nat. Commun. 7 (2016), pp. 10313-1-7.
  • D. Ma, A.D. Stoica, and X.-L. Wang, Volume conservation in bulk metallic glasses, Appl. Phys. Lett. 91 (2007), pp. 021905-1-3.
  • I. Bakonyi, Atomic volumes and local structure of metallic glasses, Acta Mater. 53 (2005), pp. 2509–2520.
  • Y. Zhang and A.L. Greer, Correlations for predicting plasticity or brittleness of metallic glasses, J. Alloys Compd. 434 (2007), pp. 2–5.
  • C.A. Angell, Formation of glasses from liquids and biopolymers, Science 267 (1995), pp. 1924–1935.
  • K. Russew, L. Stoyanova, S. Yankova, E. Fazekas, and L.K. Varga, Thermal behavior and melt fragility number of Cu100-xZrx glassy alloys in terms of crystallization and viscous flow, J. Phys. Conf. Series 144 (2009), pp. 012094-1-4.
  • D.B. Miracle, A structural model for metallic glasses, Nat. Mater. 3 (2004), pp. 697–702.
  • H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai, and E. Ma, Atomic packing and short-to-medium range order in metallic glasses, Nature 439 (2006), pp. 419–425.
  • A.R. Yavari, A new order for metallic glasses, Nature 439 (2006), pp. 405–406.
  • K. Zhang, B. Dice, Y. Liu, J. Schroers, M.D. Shattuck, and C.S. O′Hern, On the origin of multi-component bulk metallic glasses: Atomic size mismatches and de-mixing, J. Chem. Phys. 143 (2015), pp. 054501-1-7.
  • M. Yang, X.J. Liu, H.H. Ruan, Y. Wu, H. Wang, and Z.P. Lu, High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses, J. Appl. Phys. 119 (2016), pp. 245112-1-7.
  • K. Biljaković, G. Remenyi, I.A. Figueroa, R. Ristić, D. Pajić, A. Kuršumović, D. Starešinić, K. Zadro, and E. Babić, Electronic structure and properties of (TiZrNbCu)1-xNix high entropy amorphous alloys, J. Alloys Compd. 695 (2017), pp. 2661–2668.10.1016/j.jallcom.2016.11.179
  • E. Babić, A. Kuršumović, and R. Ristić, Metallic glasses: Past and present, Metglass workshop, Book of Abstracts, Sarajevo, 2014, p. 11.
  • H.-J. Fecht and W.L. Johnson, Thermodynamic properties and metastability of bulk metallic glasses, Mater. Sci. Eng. A 375–377 (2004), pp. 2–8.10.1016/j.msea.2003.10.254
  • M. Hasegawa, H. Sato, T. Takeuchi, K. Soda, and U. Mizutani, Electronic structure of Zr-based metallic glasses, J. Alloys. Compd. 483 (2009), pp. 638–641.
  • P. Steiner, M. Schmidt, and S. Hüffner, Photoemission study of Pd Zr and Cu Zr alloys, Solid State Commun. 35 (1980), pp. 493–495.
  • C.Y. Yu, X.J. Liu, and C.T. Liu, First-principles prediction of the glass-forming ability in Zr–Ni binary metallic glasses, Intermetallics 53 (2014), pp. 177–182.10.1016/j.intermet.2014.04.020
  • P. Garoche and J. Bigot, Comparison between amorphous and crystalline phases of copper-zirconium alloys by specific-heat measurements, Phys. Rev. B 28 (1983), pp. 6886–6895.10.1103/PhysRevB.28.6886
  • Z. Altounian, T. Guo‐hua, and J.O. Strom-Olsen, Crystallization characteristics of Cu–Zr metallic glasses from Cu70Zr30 to Cu25Zr75, J. Appl. Phys. 53 (1982), pp. 4755–4760.10.1063/1.331304
  • R. Ristić and E. Babić, Thermodynamic properties and atomic structure of amorphous zirconium, Mater. Sci. Eng. A 449–451 (2007), pp. 569–572.
  • R. Ristić, M. Stubičar, and E. Babić, Correlation between mechanical, thermal and electronic properties in Zr–Ni, Cu amorphous alloys, Phil. Mag. 87 (2007), pp. 5629–5637.
  • R. Ristić, E. Babić, A. Kuršumović, and M. Stubičar, Correlation between electronic structure, mechanical properties and stability of TE–TL metallic glasses, Croat. Chem. Acta 83 (2010), pp. 33–37.
  • E. Babić, R. Ristić, M. Miljak, M.G. Scott, and G. Gregan, Superconductivity in zirconium-nickel glasses, Solid State Commun. 39 (1981), pp. 139–141.
  • J. Ivkov, E. Babić, and R.L. Jacobs, Hall effect and electronic structure of glassy Zr 3d alloys, J. Phys. F:Met. Phys. 14 (1984), pp. L53–L56.
  • Ž. Marohnić, E. Babić, M. Guberović, and G.J. Morgan, Induced anisotropy of conductivity and electronic structure of glassy Zr–Ni alloys, J. Non. Cryst. Sol. 105 (1988), pp. 303–306.
  • Z. Altounian, T. Guo‐hua, and J.O. Strom-Olsen, Crystallization characteristics of Ni–Zr metallic glasses from Ni20Zr80 to Ni70Zr30, J. Appl. Phys. 54 (1983), pp. 3111–3116.10.1063/1.332465
  • I.A. Figueroa, J.D. Plummer, G.A. Lara-Rodriguez, O. Novelo-Peralta, and I. Todd, Metallic glass formation in the binary Cu–Hf system, J. Mater. Sci. 48 (2013), pp. 1819–1825.10.1007/s10853-012-6946-5
  • L. Mendoza-Zelis, L.C. Damonte, and A.R. Lopez-Garcia, Crystallization of amorphous Hf100-xCux alloys, Hyperfine Int. 52 (1989), pp. 161–177 and reference therein .10.1007/BF02609556
  • FactSage Browser-online, Available at http://www.crct.polymtl.ca/fact/documentation/.
  • K.H.J. Buschow, Short-range order and thermal stability in amorphous alloys, J. Phys. F: Met. Phys. 14 (1984), pp. 593–607 and reference therein.10.1088/0305-4608/14/3/005
  • K.H.J. Buschow, Thermal stability of amorphous Ti-Cu alloys, Acta Metall. 31 (1983), pp. 155–160.
  • K.H.J. Buschow, Effect of short-range ordering on the thermal stability of amorphous Ti-Cu alloys, Scripta Metall. 17 (1983), pp. 1135–1139.
  • S. Mankovsky, I. Bakonyi, and H. Ebert, Magnetic susceptibility contributions and electronic density of states in (Ti,Zr)100-x(Ni,Cu)x metallic glasses and crystalline compounds, Phys. Rev. B 76 (2007), pp. 184405-1-15 and reference therein.
  • N. Nomura, Y. Tanaka, R. Suyalata, H. Kondo, Y.Tsutsumi Doi, and T. Hanawa, Effects of phase constitution of Zr-Nb alloys on their magnetic susceptibilities, Mater. Trans. 50 (2009), pp. 2466–2472.
  • U. Mizutani, N. Akutsu, and T. Mizoguchi, Electronic properties of Cu–Ti metallic glasses, J. Phys. F: Met. Phys. 13 (1983), pp. 2127–2136.10.1088/0305-4608/13/10/022
  • J. Reeve, G.P. Gregan, and H.A. Davies, Glass forming ability studies in the copper-titanium system, in Rapidly Quenched Metals, S. Steeb and H. Varlimont, eds., Elsevier Science Publishers B.V., Vol. 1, 1985, pp. 203–206.
  • R.C. Bowman Jr., A.J. Maeland, W.-K. Rhim, and J.F. Lynch, Hydrogen diffusion and electronic structure in crystalline and amorphous TiyCuHx, Proceedigs of a NATO International Symposium on the Electronic Structure and Properties of Hydrogen in Metals, Plenum PressRichmond, VA, 1982, pp. 479–484.
  • T.B. Masalski, Relationships between metallic glass formation diagrams and phase diagrams, in Proceedings of 4th International Conference on Rapidly Quenched Metals, The Japan Institute of Metals, Sendai, Vol. 1, 1981, pp. 203–208.
  • Y. Li, Q. Guo, J.A. Kalb, and C.V. Thomson, Matching glass-forming ability with the density of the amorphous phase, Science 322 (2008), pp. 1816–1819.10.1126/science.1163062
  • D.-H. Kang, H. Zhang, H. Yoo, H.H. Lee, G.W. Lee, H. Lou, H. Wang, Q. Cao, D. Zhang, and J. Jiang, Interfacial free energy controlling glass-forming ability of Cu–Zr alloys, Sci. Rep. 4 (2014), pp. 5167-1-5.
  • C.C. Yuan, F. Yang, F. Kargl, D. Holland-Moritz, G.G. Simeoni, and A. Meyer, Atomic dynamics in Zr-(Co, Ni)-Al metallic glass-forming liquids, Phys. Rev. B 91 (2015), pp. 214203-1-5.
  • Y.D. Dong, G. Gregan, and M.G. Scott, Formation and stability of nickel-zirconium glasses, J. Non-Cryst. Sol. 43 (1981), pp. 403–415.10.1016/0022-3093(81)90108-3
  • T. Abe, M. Shimono, M. Ode, and H. Onodera, Estimation of the glass forming ability of the Ni–Zr and the Cu–Zr alloys, J. Alloys Compd. 434–435 (2007), pp. 152–155.10.1016/j.jallcom.2006.08.172
  • I. Kaban, P. Jovari, V. Kohotin, O. Shulshova, B. Beunen, K. Saksl, N. Mattern, J. Eckert, and A.L. Greer, Local atomic arrangements and their topology in Ni–Zr and Cu–Zr glassy and crystalline alloys, Acta Mat. 61 (2013), pp. 2509–2520
  • E. Matsubara, T. Ichitsubo, J. Saida, S. Kohara, and H. Ohsumi, Structural study of Zr-based metallic glasses, J. Alloys Compd. 434–435 (2007), pp. 119–120.
  • L. Hou, H. Liu, Q. Liu, C. Dun, W. Yang, J. Huo, and L. Dou, Effects of crystallization on boson peak of Zr52.5Cu17.9Ni14.6Al10Ti5 bulk metallic glass, Low Temp. Phys. 178 (2015), pp. 11–17.
  • Z. Wang, B. Sun, and J. Lu, Effects of crystallization on low-temperature specific heat capacity of Cu60Zr20Hf10Ti10 bulk metallic glass, Trans. Nonferrous Met. Soc. China 21 (2011), pp. 1309–1313.
  • W.H. Wang, H.Y. Bai, J.L. Luo, R.J. Wang, and D. Jin, Supersoftening of transverse phonons in Zr41Ti14Cu12.5Ni10Be22.5 bulk metallic glass, Phys. Rev. B 62 (2000), pp. 25–28.10.1103/PhysRevB.62.25

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.