475
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Nanoindentation of ion-irradiated reactor pressure vessel steels – model-based interpretation and comparison with neutron irradiation

, , , , ORCID Icon, & show all
Pages 911-933 | Received 07 Aug 2017, Accepted 14 Dec 2017, Published online: 15 Jan 2018

References

  • G.R. Odette, On the dominant mechanism of irradiation embrittlement of reactor pressure vessel steels, Scr. Metall. 17 (1983), pp. 1183–1188.10.1016/0036-9748(83)90280-6
  • G.R. Odette and G.E. Lucas, Recent progress in understanding reactor pressure vessel steel embrittlement, Rad. Eff. Def. Sol. 144 (1998), pp. 189–231.10.1080/10420159808229676
  • J.C. van Duysen and G. Meric de Bellefon, 60th Anniversary of electricity production from light water reactors: Historical review of the contribution of materials science to the safety of the pressure vessel, J. Nucl. Mater. 484 (2017), pp. 209–227.10.1016/j.jnucmat.2016.11.013
  • D.J. Mazey, Fundamental aspects of high-energy ion-beam simulation techniques and their relevance to fusion materials studies, J. Nucl. Mater. 174 (1990), pp. 196–209.10.1016/0022-3115(90)90234-E
  • C. Abromeit, Aspects of simulation of neutron damage by ion irradiation, J. Nucl. Mater. 216 (1994), pp. 78–96.10.1016/0022-3115(94)90008-6
  • G.S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys, Springer-Verlag, Berlin, 2007.
  • M.J. Fluss, P. Hosemann, and J. Marian, Charged-particle irradiation for neutron radiation damage studies, Charact. Mater. (2012), pp. 2111–2127.
  • R.J. Bourcier, D.M. Follstaedt, M.T. Dugger, and S.M. Myers, Mechanical characterization of several ion-implanted alloys: Nanoindentation testing, wear testing and finite element modeling, Nucl. Instr. Meth. Phys. Res. B 59–60 (1991), pp. 905–908.10.1016/0168-583X(91)95730-2
  • P. Hosemann, C. Vieh, R.R. Greco, S. Kabra, J.A. Valdez, M.J. Cappiello, and S.A. Maloy, Nanoindentation on ion irradiated steels, J. Nucl. Mater. 389 (2009), pp. 239–247.10.1016/j.jnucmat.2009.02.026
  • C. Heintze, F. Bergner, S. Akhmadaliev, and E. Altstadt, Ion irradiation combined with nanoindentation as a screening test procedure for irradiation hardening, J. Nucl. Mater. 472 (2016), pp. 196–205.10.1016/j.jnucmat.2015.07.023
  • P.M. Rice and R.E. Stoller, The effect of solutes on defect distributions and hardening in ion-irradiated model ferritic alloys, J. Nucl. Mater. 244 (1997), pp. 219–226.10.1016/S0022-3115(96)00753-2
  • K. Fujii and K. Fukuya, Characterization of defect clusters in ion-irradiated A533B steel, J. Nucl. Mater. 336 (2005), pp. 323–330.10.1016/j.jnucmat.2004.10.090
  • K. Fujii, T. Ohkubo, and K. Fukuya, Effects of solute elements on irradiation hardening and microstructural evolution in low alloy steels, J. Nucl. Mater. 417 (2011), pp. 949–952.10.1016/j.jnucmat.2010.12.192
  • H. Watanabe, S. Masaki, S. Masubuchi, N. Yoshida, and Y. Kamada, Radiation induced hardening of ion irradiated RPV steels, J. Nucl. Mater. 417 (2011), pp. 932–935.10.1016/j.jnucmat.2010.12.179
  • K. Yabuuchi, M. Saito, R. Kasada, and A. Kimura, Neutron irradiation hardening and microstructure changes in Fe–Mn binary alloys, J. Nucl. Mater. 414 (2011), pp. 498–502.10.1016/j.jnucmat.2011.05.008
  • H.-H. Jin, J. Kwon, and C. Shin, Evolution of radiation defect and radiation hardening in heat treated SA508 Gr3 steel, Nucl. Instr. Meth. Phys. Res. B 319 (2014), pp. 24–28.10.1016/j.nimb.2013.11.008
  • H. Watanabe, S. Arase, T. Yamamoto, P. Wells, T. Onishi, and G.R. Odette, Hardening and microstructural evolution of A533b steels irradiated with Fe ions and electrons, J. Nucl. Mater. 471 (2016), pp. 243–250.10.1016/j.jnucmat.2015.12.045
  • Z. Yao, M. Hernández-Mayoral, M.L. Jenkins, and M.A. Kirk, Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 1: Damage evolution in thin-foils at lower doses, Phil. Mag. 88 (2008), pp. 2851–2880.10.1080/14786430802380469
  • M. Hernández-Mayoral, Z. Yao, M.L. Jenkins, and M.A. Kirk, Heavy-ion irradiations of Fe and Fe–Cr model alloys Part 2: Damage evolution in thin-foils at higher doses, Phil. Mag. 88 (2008), pp. 2881–2897.10.1080/14786430802380477
  • C.D. Hardie and S.G. Roberts, Nanoindentation of model Fe–Cr alloys with self-ion irradiation, J. Nucl. Mater. 433 (2013), pp. 174–179.10.1016/j.jnucmat.2012.09.003
  • G.S. Was, M. Hash, and R.G. Odette, Hardening and microstructure evolution in proton-irradiated model and commercial pressure-vessel steels, Phil. Mag. 85 (2006), pp. 703–722.
  • W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, J. Mech. Solids. 46 (1998), pp. 411–425.10.1016/S0022-5096(97)00086-0
  • R. Kasada, Y. Takayama, K. Yabuuchi, and A. Kimura, A new approach to evaluate irradiation hardening of ion-irradiated ferritic alloys by nano-indentation techniques, Fus. Eng. Des. 86 (2011), pp. 2658–2661.10.1016/j.fusengdes.2011.03.073
  • Y. Takayama, R. Kasada, Y. Sakamoto, K. Yabuuchi, A. Kimura, M. Ando, D. Hamaguchi, and H. Tanigawa, Nanoindentation hardness and its extrapolation to bulk-equivalent hardness of F82H steels after single- and dual-ion beam irradiation, J. Nucl. Mater. 442 (2013), pp. S23–S27.10.1016/j.jnucmat.2012.12.033
  • X. Liu, R. Wang, A. Ren, J. Jiang, C. Xu, P. Huang, W. Qian, Y. Wub, and C. Zhang, Evaluation of radiation hardening in ion-irradiated Fe based alloys by nanoindentation, J. Nucl. Mater. 444 (2014), pp. 1–6.
  • P. Hosemann, D. Kiener, Y. Wang, and S.A. Maloy, Issues to consider using nano indentation on shallow ion beam irradiated materials, J. Nucl. Mater. 425 (2012), pp. 136–139.10.1016/j.jnucmat.2011.11.070
  • X. Xiao, Q. Chen, H. Yang, H. Duan, and J. Qu, A mechanistic model for depth-dependent hardness of ion irradiated metals, J. Nucl. Mater. 485 (2017), pp. 80–89.10.1016/j.jnucmat.2016.12.039
  • H.-S. Kim, D.-H. Lee, M.-Y. Seok, Y. Zhao, W.-J. Kim, D. Kwon, H.-H. Jin, J. Kwon, and J. Jang, A novel way to estimate the nanoindentation hardness of only-irradiated layer and its application to ion irradiated Fe–12Cr alloy, J. Nucl. Mater. 487 (2017), pp. 343–347.10.1016/j.jnucmat.2017.02.028
  • A. Ulbricht and J. Böhmert, Small angle neutron scattering analysis of the radiation susceptibility of reactor pressure vessel steels, Phys. B 350 (2004), pp. E483–E486.10.1016/j.physb.2004.03.126
  • A. Ulbricht, J. Böhmert, and H.-W. Viehrig, Microstructural and mechanical characterization of radiation effects in model reactor pressure vessel steels, J. ASTM Int. 2 (2005) 10, Paper ID JAI12385.
  • F. Bergner, A. Ulbricht, and H.-W. Viehrig, Acceleration of irradiation hardening of low-copper reactor pressure vessel steel observed by means of SANS and tensile testing, Phil. Mag. Lett. 89 (2009), pp. 795–805.10.1080/09500830903304117
  • A. Wagner, F. Bergner, A. Ulbricht, and C.D. Dewhurst, Small-angle neutron scattering of low-Cu RPV steels neutron-irradiated at 255 °C and post-irradiation annealed at 290 °C, J. Nucl. Mater. 441 (2013), pp. 487–492.10.1016/j.jnucmat.2013.06.032
  • E. Altstadt, E. Keim, H. Hein, M. Serrano, F. Bergner, H.-W. Viehrig, A. Ballesteros, R. Chaouadi, and K. Wilford, FP7 Project LONGLIFE, overview of results and implications, Nucl. Eng. Des. 278 (2014), pp. 753–757.10.1016/j.nucengdes.2014.09.003
  • G.R. Odette and B.D. Wirth, A computational microscopy study of nanostructural evolution in irradiated pressure vessel steels, J. Nucl. Mater. 251 (1997), pp. 157–171.10.1016/S0022-3115(97)00267-5
  • IAEA, Manufracturing history and mechanical properties of japanese materials provided for the international atomic energy agency, CRP Sub-Committee Japan Welding Engineering Society, IAEA, Vienna, October 1986.
  • H.-W. Viehrig, M. Scibetta, and K. Wallin, Application of advanced master curve approaches on WWER-440 reactor pressure vessel steels, Int. J. Press. Vessels Pip. 83 (2006), pp. 584–592.10.1016/j.ijpvp.2006.04.005
  • J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, SRIM – The stopping and range of ions in matter (2010), Nucl. Instr. Meth. Phys. Res. B 268 (2010) pp. 1818–1823.10.1016/j.nimb.2010.02.091
  • R.E. Stoller, M.B. Toloczko, G.S. Was, A.G. Certain, S. Dwaraknath, and F.A. Garner, On the use of SRIM for computing radiation damage exposure, Nucl. Instr. Meth. Phys. Res. B 310 (2013), pp. 75–80.10.1016/j.nimb.2013.05.008
  • M.R. Maughan, A.A. Leonard, D.D. Stauffer, and D.F. Bahr, The effects of intrinsic properties and defect structures on the indentation size effect in metals, Phil. Mag. 97 (2017), pp. 1902–1920.10.1080/14786435.2017.1322725
  • A. Kareer, A. Prasitthipayong, D. Krumwiede, D.M. Collins, P. Hosemann, and S.G. Roberts, An analytical method to extract irradiation hardening from nanoindentation hardness-depth curves, J. Nucl. Mater. 498 (2018), pp. 274–281.10.1016/j.jnucmat.2017.10.049
  • T.S. Byun and K. Farrell, Irradiation hardening behavior of polycrystalline metals after low temperature irradiation, J. Nucl. Mater. 326 (2004), pp. 86–96.10.1016/j.jnucmat.2003.12.012
  • B. Jönsson and S. Hogmark, Hardness measurements of thin films, Thin Solid Films 114 (1984), pp. 257–269.10.1016/0040-6090(84)90123-8
  • A.J. Wilkinson and D. Randman, Determination of elastic strain fields and geometrically necessary dislocation distributions near nanoindents using electron back scatter diffraction, Phil. Mag. 90 (2010), pp. 1159–1177.10.1080/14786430903304145
  • Z. Xue, Y. Huang, K.C. Hwang, and M. Li, The influence of the indenter tip radius on the micro-indentation hardness, J. Eng. Mater. Technol. 124 (2002), pp. 371–379.10.1115/1.1480409
  • X. Hou and N.M. Jennett, Application of a modified slip-distance theory to the indentation of single-crystal and polycrystalline copper to model the interactions between indentation size and structure size effects, Acta Mater. 60 (2012), pp. 4128–4135.10.1016/j.actamat.2012.03.054
  • T.A. Laursen and J.C. Simo, A study of the mechanics of microindentation using finite elements, J. Mater. Res. 7 (1992), pp. 618–626.10.1557/JMR.1992.0618
  • D. Chicot and J. Lesage, Absolute hardness of films and coatings, Thin Solid Films 254 (1995), pp. 123–130.10.1016/0040-6090(94)06239-H
  • J. Kočı́k, E. Keilová, J. Čı́žek, and I. Procházka, TEM and PAS study of neutron irradiated VVER-type RPV steels, J. Nucl. Mater. 303 (2002), pp. 52–64.10.1016/S0022-3115(02)00800-0
  • L. Malerba, G.J. Ackland, C.S. Becquart, G. Bonny, C. Domain, S.L. Dudarev, C.-C. Fu, D. Hepburn, M.C. Marinica, P. Olsson, R.C. Pasianot, J.M. Raulot, F. Soisson, D. Terentyev, E. Vincent, and F. Willaime, Ab initio calculations and interatomic potentials for iron and iron alloys: Achievements within the Perfect Project, J. Nucl. Mater. 406 (2010), pp. 7–18.10.1016/j.jnucmat.2010.05.016
  • E. Meslin, B. Radiguet, and M. Loyer-Prost, Radiation-induced precipitation in a ferritic model alloy: An experimental and theoretical study, Acta Mater. 61 (2013), pp. 6246–6254.10.1016/j.actamat.2013.07.008
  • A. Wagner, Long-term irradiation effects on reactor pressure vessel steels, investigation on the nanometer scale, Ph.D. diss., Martin-Luther-Universität Halle-Wittenberg, 2017.
  • F. Bergner, A. Ulbricht, M. Hernandez-Mayoral, and P.K. Pranzas, Small-angle neutron scattering study of neutron-irradiated iron and an iron–nickel alloy, J. Nucl. Mater. 374 (2008), pp. 334–337.10.1016/j.jnucmat.2007.07.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.