298
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Selective role of bainitic lath boundary in influencing slip systems and consequent deformation mechanisms and delamination in high-strength low-alloy steel

, , , , , & show all
Pages 934-958 | Received 06 Jul 2017, Accepted 14 Dec 2017, Published online: 19 Jan 2018

References

  • K. Nishioka and K. Ichikawa, Progress in thermomechanical control of steel plates and their commercialization, Sci. Technol. Adv. Mater. 13 (2012), pp. 1–20.
  • X. Zhu and B.N. Leis, Evaluation of burst pressure prediction models for line pipes, Int. J. Pressure Vessels Pip. 89 (2012), pp. 85–97.
  • H.L. Li, C.Y. Huo, L.K. Ji, and Y. Li, Development and Application of High Performance X80 Line Pipe for the 2(nd) West-East Gas Pipeline, J. Iron Steel Res. Int. 18 (2011), pp. 39–48.
  • Y.-Q. Weng, C.-F. Yang, and C.-J. Shang, State-of-the-art and development trends of HSLA steels in China, Iron and Steel/Gangtie 46 (2011), pp. 1–10.
  • K.-C. Tsai, H.-W. Chen, C.-P. Hong, and Y.-F. Su, Design of steel triangular plate energy absorbers for seismic‐resistant construction, Earthquake Spectra 9 (1993), pp. 505–528.10.1193/1.1585727
  • W. Nie, X. Wang, S. Wu, H. Guan, and C. Shang, Stress-strain behavior of multi-phase high performance structural steel, Sci. China Tech. Sci. 55 (2012), pp. 1791–1796.10.1007/s11431-012-4879-5
  • A. Ardell, Precipitation hardening, Metall. Trans. A 16 (1985), pp. 2131–2165.10.1007/BF02670416
  • Y. Estrin and H. Mecking, A unified phenomenological description of work hardening and creep based on one-parameter models, Acta Metall. 32 (1984), pp. 57–70.10.1016/0001-6160(84)90202-5
  • A. Akhtar and E. Teghtsoonian, Solid solution strengthening of magnesium single crystals – ii the effect of solute on the ease of prismatic slip, Acta Metall. 17 (1969), pp. 1351–1356.10.1016/0001-6160(69)90152-7
  • E. Hall, The Deformation and Ageing of Mild Steel: III Discussion of Results, Proc. Phys. Soc. London, Sect. B 64 (1951), pp. 747.10.1088/0370-1301/64/9/303
  • N. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 174 (1953), pp. 25–28.
  • X.-K. Zhu and B.N. Leis, CVN and DWTT energy methods for determining fracture arrest toughness of high strength pipeline steels, 2012 9th international pipeline conference: American society of mechanical engineers (2012), pp. 565–573.10.1115/IPC2012-90624
  • M. Yang, Y.J. Chao, X. Li, and J. Tan, Splitting in dual-phase 590 high strength steel plates: Part I. Mechanisms, Mater. Sci. Eng., A 497 (2008), pp. 451–461.10.1016/j.msea.2008.07.067
  • L. Xiucheng, X. Zhenjia, W. Xuelin, W. Xuemin, and S. Chengjia, Split fracture phenomenon and mechanism in tensile tests of high strength low carbon bainitic steel, Acta. Metall. Sin. 49 (2013), pp. 167–174.
  • W.-L. Guo, H.-R. Dong, Z. Yang, M. Lu, X. Zhao, and J. Luo, Effects of thickness and delamination on fracture toughness of X 60 pipeline steel, Acta. Metall. Sin. (China) 37 (2001), pp. 386–390.
  • W. Guo, H. Dong, M. Lu, and X. Zhao, The coupled effects of thickness and delamination on cracking resistance of X70 pipeline steel, Int. J. Pressure Vessels Pip. 79 (2002), pp. 403–412.10.1016/S0308-0161(02)00039-X
  • B. Bramfitt and A. Marder, A study of the delamination behavior of a very low-carbon steel, Metall. Trans. A 8 (1977), pp. 1263–1273.10.1007/BF02643841
  • A. Benzerga, J. Besson, and A. Pineau, Anisotropic ductile fracture: Part I: Experiments, Acta Mater. 52 (2004), pp. 4623–4638.10.1016/j.actamat.2004.06.020
  • W. Yan, W. Sha, L. Zhu, W. Wang, Y.-Y. Shan, and K. Yang, Delamination fracture related to tempering in a high-strength low-alloy steel, Metall. Mater. Trans. A 41 (2010), pp. 159–171.10.1007/s11661-009-0068-y
  • Y. Kimura, T. Inoue, and K. Tsuzaki, Tempforming in medium-carbon low-alloy steel, J. Alloy. Compd. 577 (2013), pp. S538–S542.10.1016/j.jallcom.2011.12.123
  • M. Joo, D.-W. Suh, J. Bae, and H. Bhadeshia, Role of delamination and crystallography on anisotropy of Charpy toughness in API-X80 steel, Mater. Sci. Eng., A 546 (2012), pp. 314–322.10.1016/j.msea.2012.03.079
  • T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai, Delamination effect on impact properties of ultrafine-grained low-carbon steel processed by warm caliber rolling, Metall. Mater. Trans. A 41 (2010), pp. 341–355.10.1007/s11661-009-0093-x
  • H. Aaronson, G. Spanos, and W. Reynolds, A progress report on the definitions of bainite, Scripta Mater. 47 (2002), pp. 139–144.10.1016/S1359-6462(02)00119-7
  • S. Morito, H. Tanaka, R. Konishi, T. Furuhara, and T. Maki, The morphology and crystallography of lath martensite in Fe-C alloys, Acta Mater. 51 (2003), pp. 1789–1799.10.1016/S1359-6454(02)00577-3
  • H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Mater. 54 (2006), pp. 1279–1288.10.1016/j.actamat.2005.11.001
  • P. Franciosi, Glide mechanisms in bcc crystals: An investigation of the case of α-iron through multislip and latent hardening tests, Acta Metall. 31 (1983), pp. 1331–1342.10.1016/0001-6160(83)90004-4
  • W. Spitzig and A. Keh, The effect of orientation and temperature on the plastic flow properties of iron single crystals, Acta Metall. 18 (1970), pp. 611–622.10.1016/0001-6160(70)90090-8
  • T. Taoka, S. Takeuchi, and E. Furubayashi, Slip systems and their critical shear stress in 3% silicon iron, J. Phys. Soc. Jpn. 19 (1964), pp. 701–711.10.1143/JPSJ.19.701
  • D. Caillard, Kinetics of dislocations in pure Fe. Part I. In situ straining experiments at room temperature, Acta Mater. 58 (2010), pp. 3493–3503.10.1016/j.actamat.2010.02.023
  • M. Gilbert, S. Queyreau, and J. Marian, Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics, Phys. Rev. B 84 (2011), p. 1052.10.1103/PhysRevB.84.174103
  • S. Queyreau, J. Marian, M. Gilbert, and B. Wirth, Edge dislocation mobilities in bcc Fe obtained by molecular dynamics, Phys. Rev. B 84 (2011), p. 29.10.1103/PhysRevB.84.064106
  • M. Itakura, H. Kaburaki, and M. Yamaguchi, First-principles study on the mobility of screw dislocations in bcc iron, Acta Mater. 60 (2012), pp. 3698–3710.10.1016/j.actamat.2012.03.033
  • X.C. Li, C.J. Shang, D.X. Xia, and X.L. He, The high Nb content microalloying approach for developing high performance structural steel, Mater. Sci. Forum 638-642(2010), pp. 3508–3513.10.4028/www.scientific.net/MSF.638-642
  • L.P. Kubin and A. Mortensen, Geometrically necessary dislocations and strain-gradient plasticity: A few critical issues, Scripta Mater. 48 (2003), pp. 119–125.10.1016/S1359-6462(02)00335-4
  • H. Gao, Y. Huang, W.D. Nix, and J.W. Hutchinson, Mechanism-based strain gradient plasticity— I. Theory, J. Mech. Phys. Solids 47 (1999), pp. 1239–1263.10.1016/S0022-5096(98)00103-3
  • A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, and W. Bleck, Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels, Int. J. Plast 43 (2013), pp. 128–152.10.1016/j.ijplas.2012.11.003
  • W. Read and W. Shockley, Dislocation models of crystal grain boundaries, Phys. Rev. 78 (1950), p. 275.10.1103/PhysRev.78.275
  • D. Wolf, A read-shockley model for high-angle grain boundaries, Scr. Metall. 23 (1989), pp. 1713–1718.10.1016/0036-9748(89)90348-7
  • S. Yang, C. Shang, X. Wang, and X. He, Abnormally turning of fine lath-like microstructures in low carbon microalloyed steel during mono-axis tension, Acta. Metall. Sin.-Chinese Edition 39 (2003), pp. 579–584.
  • J.P. Hirth, The influence of grain boundaries on mechanical properties, Metall. Trans. 3 (1972), pp. 3047–3067.10.1007/BF02661312
  • J.C.M. Li and Y.T. Chou, The role of dislocations in the flow stress grain size relationships, Metall. Mater. Trans. B 1 (1970), p. 747.10.1007/BF02900225
  • N. Takayama, G. Miyamoto, and T. Furuhara, Effects of transformation temperature on variant pairing of bainitic ferrite in low carbon steel, Acta Mater. 60 (2012), pp. 2387–2396.10.1016/j.actamat.2011.12.018
  • T. Furuhara, H. Kawata, S. Morito, G. Miyamoto, and T. Maki, Variant selection in grain boundary nucleation of upper bainite, Metall. Mater. Trans. A 39 (2008), pp. 1003–1013.10.1007/s11661-008-9510-9
  • A.T. Davenport, The crystallography of upper bainite, Republic Steel Research Rep. on Project 12051 (1974), pp. 1–35.
  • Y. You, C. Shang, and S. Subramanian, Effect of Ni addition on toughness and microstructure evolution in coarse grain heat affected zone, Met. Mater.-Int. 20 (2014), pp. 659–668.10.1007/s12540-014-4011-4
  • S.B. Singh and H.K.D.H. Bhadeshia, Estimation of bainite plate-thickness in low-alloy steels, Mater. Sci. Eng., A 245 (1998), pp. 72–79.10.1016/S0921-5093(97)00701-6
  • J. Naylor and P. Krahe, The effect of the bainite packet size on toughness, Metallurgical and Materials Transactions B 5 (1974), pp. 1701–1704.
  • L. Rancel, M. Gómez, S.F. Medina, and I. Gutierrez, Measurement of bainite packet size and its influence on cleavage fracture in a medium carbon bainitic steel, Mater. Sci. Eng., A 530 (2011), pp. 21–27.10.1016/j.msea.2011.09.001
  • R. Honda, Cleavage fracture in single crystals of silicon iron, J. Phys. Soc. Jpn. 16 (1961), pp. 1309–1321.10.1143/JPSJ.16.1309
  • W. Tyson, R. Ayres, and D.F. Stein, Anisotropy of cleavage in BCC transition metals, Acta Metall. 21 (1973), pp. 621–627.10.1016/0001-6160(73)90071-0
  • R. Ayres and D. Stein, A dislocation dynamics approach to prediction of cleavage planes in BCC metals, Acta Metall. 19 (1971), pp. 789–794.10.1016/0001-6160(71)90135-0
  • A.H. Cottrell, Theory of brittle fracture in steel and similar metals, Trans. Met. Soc. AIME 212 (1958), 192–203.
  • C. Wang, M. Wang, J. Shi, W. Hui, and H. Dong, Effect of microstructural refinement on the toughness of low carbon martensitic steel, Scripta Mater. 58 (2008), pp. 492–495.10.1016/j.scriptamat.2007.10.053
  • A. Stroh, The formation of cracks as a result of plastic flow, Proc. R. Soc. London Ser. A, 223(1954), pp. 404–414.10.1098/rspa.1954.0124

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.