422
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On the temperature independence of statistical model parameters for cleavage fracture in ferritic steels

, , &
Pages 959-1004 | Received 30 Jun 2017, Accepted 31 Dec 2017, Published online: 06 Feb 2018

References

  • W.-S. Lei, A framework for statistical modeling of plastic yielding initiated cleavage fracture of structural steels, Philos. Mag. 96 (2016), pp. 3586–3631.10.1080/14786435.2016.1232494
  • W.-S. Lei, A cumulative failure probability model for cleavage fracture in ferritic steels, Mech. Mater. 93 (2016), pp. 184–198.10.1016/j.mechmat.2015.11.001
  • W.-S. Lei, On the statistical modeling of cleavage fracture toughness of structural steels, Mech. Mater. 101 (2016), pp. 81–92.10.1016/j.mechmat.2016.07.009
  • G. Qian and M. Niffenegger, Deterministic and probabilistic analysis of a reactor pressure vessel subjected to pressurized thermal shocks, Nucl. Eng. Des. 273 (2014), pp. 381–395.10.1016/j.nucengdes.2014.03.032
  • G. Qian, V.F. González-Albuixech, and M. Niffenegger, Probabilistic PTS analysis of a reactor pressure vessel by considering realistic crack distributions, Nucl. Eng. Des. 270 (2014), pp. 312–324.10.1016/j.nucengdes.2013.12.062
  • J.D. Landes and D.H. Shaffer, Statistical characterization of fracture in the transition region, in Proceedings of the Twefth Conferene on Fracture Mechanics, ASTM STP 700, J.G. Kaufman, ed., American Society for Testing and Materials, Baltimore, 1980, pp. 368–382.
  • F.M. Beremin, A local approach for cleavage fracture of a nuclear pressure vessel steel, Metall. Trans. A 14 (1983), pp. 2277–2287.10.1007/BF02663302
  • C.S. Wiesner and M.R. Goldthorpe, The effect of temperature and specimen geometry on the parameters of the ‘Local Approach’ to cleavage fracture, J. de Phys. IV 6 (1996), pp. 295–304.
  • K. Hojo, I. Muroya, and A. Brückner-Foit, Fracture toughness transition curve estimation from a notched round bar specimen using the local approach method, Nucl. Eng. Des. 174 (1997), pp. 247–258.10.1016/S0029-5493(97)00125-8
  • S. Hadidi-Moud, A. Mirzaee-Sisan, C.E. Truman, and D.J. Smith, A local approach to cleavage fracture in ferritic steels following warm pre-stressing, Fatigue Fract. Eng. Mater. Struct. 27 (2004), pp. 931–942.10.1111/ffe.2004.27.issue-10
  • X. Gao, G. Zhang, and T.S. Srivatsan, Prediction of cleavage fracture in ferritic steels: A modified Weibull stress model, Mater. Sci. Eng. A 394 (2005), pp. 210–219.10.1016/j.msea.2004.11.035
  • J.P. Petti and R.H. Dodds, Calibration of the Weibull stress scale parameter, σu, using the Master Curve, Eng. Fract. Mech. 72 (2005), pp. 91–120.10.1016/j.engfracmech.2004.03.009
  • A. Pineau, Development of the local approach to fracture over the past 25 years: Theory and applications, Int. J. Fract. 138 (2006), pp. 139–166.10.1007/s10704-006-0035-1
  • G.A. Qian, V.F. González-Albuixech, and M. Niffenegger, Calibration of Beremin model with the master curve, Eng. Fract. Mech. 136 (2015), pp. 15–25.10.1016/j.engfracmech.2015.02.003
  • C. Ruggieri and R.H. Dodds, An engineering methodology for constraint corrections of elastic-plastic fracture toughness – Part I: A review on probabilistic models and exploration of plastic strain effects, Eng. Fract. Mech. 134 (2015), pp. 368–390.10.1016/j.engfracmech.2014.12.015
  • M. Moattari, I. Sattari-Far, I. Persechino, and N. Bonora, Prediction of fracture toughness in ductile-to-brittle transition region using combined CDM and Beremin models, Mater. Sci. Eng. A 657 (2016), pp. 161–172.10.1016/j.msea.2015.12.090
  • W.-S. Lei, A statistical model of cleavage fracture in structural steels with power-law distribution of microcrack size, Philos. Mag. Lett. 96 (2016), pp. 101–111.10.1080/09500839.2016.1158425
  • J. Heerens, M. Pfuff, D. Hellmann, and U. Zerbst, The lower bound toughness procedure applied to the Euro fracture toughness dataset, Eng. Fract. Mech. 69 (2002), pp. 483–495.10.1016/S0013-7944(01)00069-8
  • W.-S. Lei, A discussion of ‘An engineering methodology for constraint corrections of elastic–plastic fracture toughness – Part II: Effects of specimen geometry and plastic strain on cleavage fracture predictions’ by C. Ruggieri, R.G. Savioli, R.H. Dodds [Eng. Fract. Mech. 146 (2015) 185–209], Eng. Fract. Mech. 178(2017) (2015), pp. 527–534.
  • W.-S. Lei, Evaluation of the basic formulations for the cumulative probability of brittle fracture with two different spatial distributions of microcracks, Fatigue Fract. Eng. Mater. Struct. 39 (2016), pp. 611–623.10.1111/ffe.v39.5
  • T. Lin, A.G. Evans, and R.O. Ritchie, A statistical model of brittle fracture by transgranular cleavage, J. Mech. Phys. Solids 34 (1986), pp. 477–497.10.1016/0022-5096(86)90013-X
  • D.M. Li and M. Yao, A metallographic and fractographic study of the origin of cleavage fracture in mild steel, Mater. Charact. 36 (1996), pp. 27–33.10.1016/1044-5803(95)00236-7
  • D.M. Li and M. Yao, Modeling a cleavage-characteristic stress (Sc0) of ferritic steels, in George R. Irwin Symposium on Cleavage Fracture, Kwai S. Chan, ed., The Minerals, Metals & Materials Society, Warrendale, PA, 1997, pp. 193–205.
  • J.H. Chen, G.Z. Wang, and Q. Wang, Change of critical events of cleavage fracture with variation of microscopic features of low-alloy steels, Metall. Mater. Trans. A 33 (2002), pp. 3393–3402.10.1007/s11661-002-0327-7
  • S.R. Bordet, A.D. Karstensen, D.M. Knowles, and C.S. Wiesner, A new statistical local criterion for cleavage fracture in steel. Part I: Model presentation, Eng. Fract. Mech. 72 (2005), pp. 435–452.10.1016/j.engfracmech.2004.02.009
  • S. Kotrechko, The key problems of local approach to cleavage fracture, J. Theor. Appl. Mech. 51 (2013), pp. 75–89.
  • M. Scibetta, A cleavage fracture framework: New perspectives in cleavage modeling of ferritin steels, Eng. Fract. Mech. 160 (2016), pp. 147–169.10.1016/j.engfracmech.2016.03.047
  • A. Pineau, A.A. Benzerga, and T. Pardoen, Failure of metals I: Brittle and ductile fracture, Acta Mater. 107 (2016), pp. 424–483.10.1016/j.actamat.2015.12.034
  • M. Mäntylä, A. Rossoll, I. Nedbal, C. Prioul, and B. Marini, Fractographic observations of cleavage fracture intiation in a bainitic A508 steel, J. Nucl. Mater. 264 (1999), pp. 257–262.10.1016/S0022-3115(98)00496-6
  • T. Narström and M. Isacsson, Microscopic investigation of cleavage initiation in modified A508B pressure vessel steel, Mater. Sci. Eng. A 271 (1999), pp. 224–231.10.1016/S0921-5093(99)00201-4
  • M.J. Balart, C.L. Davis, and M. Strangwood, Cleavage initiation in Ti-V-N and V-N microalloyed ferritin-pearlitic forging steels, Mater. Sci. Eng. A 284 (2000), pp. 1–13.10.1016/S0921-5093(00)00803-0
  • A. Echeverría-Zubiría, M.A. Linaza, and J.M. Rodriguez-Ibabe, Influence of microstructure on cleavage fracture initiation micromechanisms in steels, in 13th European Conference on Fracture (ECF13): Fracture Mechanics: Applications and Challenges, San Sebastián, September 6–9, 2000. Available at http://www.gruppofrattura.it/ocs/index.php/esis/ECF13/paper/viewFile/8530/4971
  • J. Bošanský and T. Šmida, Deformation twins-probable inherent nuclei of cleavage fracture in ferritic steels, Mater. Sci. Eng. A 323 (2002), pp. 198–205.
  • M.J. Balart, C.L. Davis, and M. Strangwood, Observations of cleavage initiation at (Ti, V)(C, N) particles of heterogeneous composition in microalloyed steels, Scripta Mater. 50 (2004), pp. 371–375.10.1016/j.scriptamat.2003.10.009
  • A. Echeverria and J.M. Rodriguez-Ibabe, Cleavage micromechanisms on microalloyed steels. Evolution with temperature of some critical parameters, Scripta Mater. 50 (2004), pp. 307–312.
  • W.W. Bose Filho, A.L.M. Carvalho, and P. Bowen, Micromechanisms of cleavage fracture initiation from inclusions in ferritin welds. Part II. Quantification of local fracture behavior observed in fatigue pre-cracked testpieces, Mater. Sci. Eng. A 452–453 (2007), pp. 401–410.10.1016/j.msea.2006.10.096
  • W.W. Bose Filho, A.L.M. Carvalho, and P. Bowen, Micromechanisms of cleavage fracture initiation from inclusions in ferritin welds. Part I. Quantification of local fracture behavior observed in notched testpieces, Mater. Sci. Eng. A 460–461 (2007), pp. 436–452.10.1016/j.msea.2007.01.115
  • L. Lan, C. Qiu, H. Song, and D. Zhao, Correlation of martensite-austenite constituent and cleavage crack initiation in welding heat affected zone of low carbon bainitic steel, Mater. Lett. 125 (2014), pp. 86–88.10.1016/j.matlet.2014.03.123
  • S. Asako, T. Kawabata, S. Aihara, S. Kimura, and K. Kagehira, Micro-processes of brittle fracture initiation in bainite steel manufactured by ausforming, Procedia Structural Integrity 2 (2016), pp. 3668–3675.10.1016/j.prostr.2016.06.456
  • G.Z. Wang, Y.G. Liu, and J.H. Chen, Investigation of cleavage fracture initiation in notched specimens of a C–Mn steel with carbides and inclusions, Mater. Sci. Eng. A 369 (2004), pp. 181–191.10.1016/j.msea.2003.11.003
  • J. He, J. Lian, G. Golisch, A. He, Y. Di, and S. Münstermann, Investigation on micromechanism and stress state effects on cleavage fracture of ferritin-pearlitic steel at −196 °C, Mater. Sci. Eng. A 686 (2017), pp. 134–141.
  • G. Oates and J.R. Griffiths, Mechanisms of cleavage fracture initiation in notched and smooth specimens of 3% silicon iron, Metal Sci. J. 13 (1969), pp. 341–459.
  • T. Lin, A.G. Evans, and R.O. Ritchie, Stochastic modeling of the independent roles of particle size and grain size in transgranular cleavage fracture, Metall. Trans. A 18 (1987), pp. 641–651.10.1007/BF02649480
  • J.H. Chen and G.Z. Wang, Change of critical event for cleavage fracture of HSLA steel, in Proceedings of 11th International Conference on Fracture (ICF11), Vol. 6, paper #2898, Curran Associates, Inc., Red Hook, NY, 2010, pp. 3980–3985.
  • S.G. Roberts, S.J. Noronha, A.J. Wilkinson, and P.B. Hirsch, Modelling the initiation of cleavage fracture of ferritin steels, Acta Mater. 50 (2002), pp. 1229–1244.10.1016/S1359-6454(01)00425-6
  • J.I. San Martin and J.M. Rodriguez-Ibabe, Determination of energetic parameters controlling cleavage fracture in a Ti-V microalloyed ferrite-pearlite steel, Scripta Mater. 40 (1999), pp. 459–464.
  • B.Z. Margolin, V.A. Shvetsova, A.G. Gulenko, and V.I. Kostylev, Prometry local approach to brittle fracture: Development and application, Eng. Fract. Mech. 75 (2008), pp. 3483–3498.10.1016/j.engfracmech.2007.05.002
  • K. Shibanuma, S. Aihara, and K. Suzuki, Prediction model on cleavage fracture initiation in steels having ferrite-cementite microstructures−Part I: Model presentation, Eng. Fract. Mech. 151 (2016), pp. 161–180.10.1016/j.engfracmech.2015.03.048
  • W.-S. Lei, Fracture probability of a randomly oriented microcrack under multi-axial loading for the normal tensile stress criterion, Theor. Appl. Fract. Mech. 85 (2016), pp. 164–172.10.1016/j.tafmec.2016.01.004
  • W.-S. Lei, A generalized weakest-link model for size effect on strength of quasi-brittle materials, J. Mater. Sci. 53 (2018), pp. 1227–1245.10.1007/s10853-017-1574-8
  • B.K. Dutta, S. Guin, M.K. Sahu, and M.K. Samal, Temperature dependency of Berermin’s parameters for 20MnMoNi55 material, Paper#G01/5, in Transactions of SMiRT 19 Conference, International Association for Structural Mechanics in Reactor Technology, Toronto, Canada, 2007. Available at https://www.iasmirt.org/transactions/19/G01_5.pdf
  • B.S. Manjunath, P.V. Durgaprasad, B.K. Dutta, and S.P. Prakash, Determination of Beremin’s parameters for 20MnMoNi55 ferritic steel, Paper# 129, in Transactions of SMiRT 21 Conference, International Association for Structural Mechanics in Reactor Technology, New Delhi, India, 2011. Available at https://www.iasmirt.org/transactions/21/p129.pdf
  • P.C. Chakraborti, A. Kundu, and B.K. Dutta, Weibull analysis of low temperature fracture stress data of 20MnMoNi55 and SA333 (Grade 6) steels, Mater. Sci. Eng. A 594 (2014), pp. 89–97.10.1016/j.msea.2013.11.023
  • G. Qian, W.-S. Lei, and M. Niffenegger, Calibration of a new local approach to cleavage fracture of ferritic steels, Mater. Sci. Eng. A 694 (2017), pp. 10–12.10.1016/j.msea.2017.03.111
  • G. Qian, W.-S. Lei, L. Peng, Z. Yu, M. Niffenegger, Statistical assessment of notch toughness against cleavage fracture of ferritic steels, Fatigue Fract. Eng. Mater. Struct.10.1111/ffe.12756

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.