375
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The characterisation of atomic structure and glass-forming ability of the Zr–Cu–Co metallic glasses studied by molecular dynamics simulations

& ORCID Icon
Pages 783-802 | Received 23 Mar 2017, Accepted 26 Dec 2017, Published online: 12 Jan 2018

References

  • W. Klement, R.H. Willens, and P. Duwez, Non-crystalline structure in solidified gold–silicon alloys, Nature 187 (1960), pp. 869–870.10.1038/187869b0
  • A. Inoue, Stabilization of metallic supercooled liquid, Acta Mater. 48 (2000), pp. 279–306.10.1016/S1359-6454(99)00300-6
  • A. Inoue, A. Kato, T. Zhang, S.G. Kim, and T. Masumoto, Mg-Cu-Y amorphous-alloys with high mechanical strengths produced by a metallic mold casting method, Mater. Trans. Jim. 32 (1991), pp. 609–616.10.2320/matertrans1989.32.609
  • A. Peker and W.L. Johnson, A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5, Appl. Phys. Lett. 63 (1993), p. 2342.10.1063/1.110520
  • A. Inoue, Recent progress of Zr-based bulk amorphous alloys, Sci. Reports Res. Institutes Tohoku Univ. Ser. A-Physics Chem. Metall. 42 (1996), pp. 1–11.
  • T. Zhang, A. Inoue, and T. Masumoto, Amorphous Zr-Al-TM (TM=Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K, Mater. Trans. JIM. 32 (1991), pp. 1005–1010.10.2320/matertrans1989.32.1005
  • C. Li, L. Wang, and A. Inoue, Precipitation of icosahedral quasicrystalline and crystalline approximant phases in Zr-Cu-(Co, Rh or Ir) metallic glasses, J. Non. Cryst. Solids. 306 (2002), pp. 175–181.10.1016/S0022-3093(02)01182-1
  • B. Schwarz, U. Vainio, N. Mattern, S.W. Sohn, S. Oswald, D.H. Kim, and J. Eckert, Combined in situ SAXS/WAXS and HRTEM study on crystallization of (Cu60Co40)1-xZrx metallic glasses, J. Non. Cryst. Solids. 357 (2011), pp. 1538–1546.10.1016/j.jnoncrysol.2010.11.009
  • F.A. Javid, N. Mattern, S. Pauly, and J. Eckert, Martensitic transformation and thermal cycling effect in Cu-Co-Zr alloys, J. Alloys Compd. 509 (2011), pp. S334–S337.10.1016/j.jallcom.2011.01.186
  • F.A. Javid, N. Mattern, S. Pauly, and J. Eckert, Effect of cobalt on phase formation, microstructure, and mechanical properties of Cu50−xCoxZr50 (x = 2, 5, 10, 20 at. pct) alloys, Metall. Mater. Trans. A. 43 (2012), pp. 2631–2636.10.1007/s11661-011-0945-z
  • B. Schwarz, N. Mattern, O. Shuleshova, and J. Eckert, Intermetallics liquid - liquid demixing and microstructure of Co-Cu-Zr alloys with low Zr content, Intermetallics 32 (2013), pp. 250–258.10.1016/j.intermet.2012.07.023
  • S. Pauly, K. Kosiba, P. Gargarella, B. Escher, K.K. Song, G. Wang, U. Kühn, and J. Eckert, Microstructural evolution and mechanical behaviour of metastable Cu–Zr–Co alloys, J. Mater. Sci. Technol. 30 (2014), pp. 584–589.10.1016/j.jmst.2014.05.006
  • F.A. Javid, N. Mattern, M. Samadi Khoshkhoo, M. Stoica, S. Pauly, and J. Eckert, Phase formation of Cu50-xCoxZr50 (x = 0–20 at.%) alloys: Influence of cooling rate, J. Alloys Compd. 590 (2014), pp. 428–434.10.1016/j.jallcom.2013.12.138
  • J. Antonowicz, A. Pietnoczka, T. Drobiazg, G.A. Almyras, D.G. Papageorgiou, and G.A. Evangelakis, Icosahedral order in Cu-Zr amorphous alloys studied by means of X-ray absorption fine structure and molecular dynamics simulations, Philos. Mag. 92 (2012), pp. 1865–1875.10.1080/14786435.2012.659008
  • M.I. Mendelev, M.J. Kramer, R.T. Ott, D.J. Sordelet, M.F. Besser, A. Kreyssig, A.I. Goldman, V. Wessels, K.K. Sahu, K.F. Kelton, R.W. Hyers, S. Canepari, and J.R. Rogers, Experimental and computer simulation determination of the structural changes occurring through the liquid-glass transition in Cu-Zr alloys, Philos. Mag. 90 (2010), pp. 3795–3815.10.1080/14786435.2010.494585
  • M.I. Mendelev, M.J. Kramer, R.T. Ott, and D.J. Sordelet, Molecular dynamics simulation of diffusion in supercooled Cu–Zr alloys, Philos. Mag. 89 (2009), pp. 109–126.10.1080/14786430802570648
  • G. Duan, D. Xu, Q. Zhang, G. Zhang, T. Cagin, W.L. Johnson, and W.A. Goddard, Molecular dynamics study of the binary Cu46Zr54 metallic glass motivated by experiments: Glass formation and atomic-level structure, Phys. Rev. B. 71 (2005), p. 425.10.1103/PhysRevB.71.224208
  • M.S. Daw and M.I. Baskes, Embedded atom method: derivation and application to impurities, surfaces and other defects in metal, Phys. Rev. B. 29 (1984), pp. 6443–6453.10.1103/PhysRevB.29.6443
  • M.W. Finnis and J.E. Sinclair, A simple empirical N -body potential for transition metals, Philos. Mag. A. 50 (1984), pp. 45–55.10.1080/01418618408244210
  • F. Cleri and V. Rosato, Tight-binding potentials for transition metals and alloys, Phys. Rev. B. 48 (1993), pp. 22–33.10.1103/PhysRevB.48.22
  • S.W. Kao, K.C. Yang, S.H. Wang, C.C. Hwang, P.Y. Lee, R.T. Huang, and T.S. Chin, Predicting the glass-forming-ability of alloys by molecular dynamics simulation: a working example of Ti–Co bulk metallic glasses, Jpn. J. Appl. Phys. 48 (2009), p. 061301.10.1143/JJAP.48.061301
  • H. Wei, S. Wei, X. Zhu, and X. Lu, Investigation of structural, thermal, and dynamical properties of Pd–Au–Pt ternary metal nanoparticles confined in carbon nanotubes based on MD simulation, J. Phys. Chem. C. 121 (2017), pp. 12911–12920.10.1021/acs.jpcc.7b02434
  • C.-D. Wu, Atomistic simulation of nanoformed metallic glass, Appl. Surf. Sci. 343 (2015), pp. 153–159.10.1016/j.apsusc.2015.03.091
  • C. Wu, Molecular dynamics simulation of nanotribology properties of CuZr metallic glasses, Appl. Phys. A. 122 (2016), p. 36.10.1007/s00339-016-9998-6
  • M. Celtek, S. Sengul, U. Domekeli, and C. Canan, Molecular dynamics study of structure and glass forming ability of Zr70Pd30 alloy, Eur. Phys. J. B. 89 (2016), p. 1505.10.1140/epjb/e2016-60694-5
  • S.S. Dalgic and M. Celtek, Glass forming ability and crystallization of CuTi intermetallic alloy by molecular dynamics simulation, J. Optoelectron. Adv. Mater. 13 (2011), pp. 1563–1569.
  • S. Sengul, M. Celtek, and U. Domekeli, Molecular dynamics simulations of glass formation and atomic structures in Zr60Cu20Fe20 ternary bulk metallic alloy, Vacuum 136 (2017), pp. 20–27.10.1016/j.vacuum.2016.11.018
  • M. Celtek, S. Sengul, and U. Domekeli, Glass formation and structural properties of Zr50Cu50-xAlx bulk metallic glasses investigated by molecular dynamics simulations, Intermetallics 84 (2017), pp. 62–73.10.1016/j.intermet.2017.01.001
  • W. Smith, T.R. Forester, and I.T. Todorov, DLPOLY; software available at http://www.ccp5.ac.uk/DL_POLY_CLASSIC/.
  • J.D. Honeycutt and H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard- Jones clusters, J. Phys. Chem. 91 (1987), pp. 4950–4963.10.1021/j100303a014
  • W.H. Wang, J.J. Lewandowski, and A.L. Greer, Understanding the glass-forming ability of Cu50Zr50 Alloys in Terms of a Metastable Eutectic, J. Mater. Res. 20 (2005), pp. 2307–2313.10.1557/jmr.2005.0302
  • S.W. Kao, C.C. Hwang, and T.S. Chin, Simulation of reduced glass transition temperature of Cu-Zr alloys by molecular dynamics, J. Appl. Phys. 105 (2009), pp. 1–6.
  • J.M. Cowley, X-ray measurement of order in single crystals of Cu3Au, J. Appl. Phys. 21 (1950), p. 24.10.1063/1.1699415
  • F.A. Celik and S. Kazanc, Crystallization analysis and determination of Avrami exponents of CuAlNi alloy by molecular dynamics simulation, Phys. B Condens. Matter. 409 (2013), pp. 63–70.10.1016/j.physb.2012.10.015
  • W. Hui, H.U. Tao, and Z. Tao, Local structure of Co55Ta10B35 amorphous alloy investigated by ab - initio molecular dynamics, Sci. China Physics, Mech. Astron. 56 (2013) pp. 904–909.
  • G. Voronoi, New parametric applications concerning the theory of quadratic forms - second announcement, J. Reine Angew. Math. 134 (1908), pp. 198–287.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.