203
Views
16
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Structural, elastic, electronic, optical and thermoelectric properties of the Zintl-phase Ae3AlAs3 (Ae = Sr, Ba)

, , , , ORCID Icon, & show all
Pages 1217-1240 | Received 15 Sep 2017, Accepted 20 Dec 2017, Published online: 19 Jan 2018

References

  • G.J. Snyder and E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008), pp. 105–114.10.1038/nmat2090
  • A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P. Yang, Enhanced thermoelectric performance of rough silicon nanowires, Nature 451 (2008), pp. 163–167.10.1038/nature06381
  • Y. Pei, A.D. LaLonde, N.A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, and G.J. Snyder, Stabilizing the optimal carrier concentration for high thermoelectric efficiency, Adv. Mater. 23 (2011), pp. 5674–5678.10.1002/adma.v23.47
  • S.M. Kauzlarich, S.R. Brown, and G.J. Snyder, Zintl phases for thermoelectric devices, Dalton Trans. 133 (2007), pp. 2099–2107.10.1039/b702266b
  • G. Chen, M.S. Dresselhaus, G.J.P. Fleurial, and T. Caillat, Recent developments in thermoelectric materials, Int. Mater. Rev. 48 (2003), pp. 45–66.10.1179/095066003225010182
  • M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, and P. Gogna, New directions for low-dimensional thermoelectric materials, Adv. Mater. 19 (2007), pp. 1043–1053.10.1002/(ISSN)1521-4095
  • C. Uher, Skutterudites: Prospective Novel Thermoelectrics, in Recent Trends in Thermoelectric Materials Research I, Semimetals and Semimetals Series, Terry M. Tritt, eds., Vol. 69, Elsevier, Amsterdam, 2001, pp. 139–253.10.1016/S0080-8784(01)80151-4
  • G.S. Nolas, J. Poon, and M. Kanatzidis, Recent developments in bulk thermoelectric materials, MRS Bull. 31 (2006), pp. 199–205.10.1557/mrs2006.45
  • G.J. Snyder, M. Christensen, E. Nishibori, T. Caillat, and B.B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater. 3 (2004), pp. 458–463.10.1038/nmat1154
  • F. Casper, T. Graf, S. Chadov, B. Balke, and C. Felser, Half-Heusler compounds: Novel materials for energy and spintronic applications, Semicond. Sci. Technol. 27 (2012), p. 063001.10.1088/0268-1242/27/6/063001
  • K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, Oxide thermoelectric materials: A nanostructuring approach, Annu. Rev. Mater. Res. 40 (2010), pp. 363–394.10.1146/annurev-matsci-070909-104521
  • K. Koumoto, I. Terasaki, and R. Funahashi, Complex oxide materials for potential thermoelectric applications, MRS Bull. 31 (2006), pp. 206–210.10.1557/mrs2006.46
  • S.M. Kauzlarich (ed.), Chemistry, Structure and Bonding of Zintl Phases and Ions, Selected Topics and Recent Advances, John Wiley-VCH, Weinheim, 1996.
  • E.S. Toberer, A.F. May, and G.J. Snyder, Zintl chemistry for designing high efficiency thermoelectric materials, Chem. Mater. 22 (2010), pp. 624–634.10.1021/cm901956r
  • E.S. Toberer, A. Zevalkink, N. Crisosto, and G.J. Snyder, The Zintl compound Ca5Al2Sb6 for low-cost thermoelectric power generation, Adv. Funct. Mater. 20 (2010), pp. 4375–4380.10.1002/adfm.v20.24
  • E.S. Toberer, C.A. Cox, S.R. Brown, T. Ikeda, A.F. May, S.M. Kauzlarich, and G.J. Snyder, Traversing the metal-insulator transition in a Zintl phase: Rational enhancement of thermoelectric efficiency in Yb14Mn1−xAlxSb11, Adv. Funct. Mater. 18 (2008), pp. 2795–2800.10.1002/adfm.v18:18
  • A. Zevalkink, G. Pomrehn, Y. Takagiwa, J. Swallow, and G.J. Snyder, Thermoelectric properties and electronic structure of the Zintl-phase Sr3AlSb3, ChemSusChem. 6 (2013), pp. 2316–2321.10.1002/cssc.201300518
  • G.J. Snyder and E.S. Toberer, Complex thermoelectric materials, Nat. Mater. 7 (2008), pp. 105–114.10.1038/nmat2090
  • Y. Pei, A.D. LaLonde, N.A. Heinz, X. Shi, S. Iwanaga, H. Wang, L. Chen, and G.J. Snyder, Stabilizing the optimal carrier concentration for high thermoelectric efficiency, Adv. Mater. 23 (2011), pp. 5674–5678.10.1002/adma.v23.47
  • A. Zevalkink, E.S. Toberer, W.G. Zeier, E. Flage-Larsen, and G.J. Snyder, Ca3AlSb3: An inexpensive, non-toxic thermoelectric material for waste heat recovery, Energy Environ. Sci. 4 (2011), pp. 510–518.10.1039/C0EE00517G
  • Y.L. Yan and Y.X. Wang, Crystal structure, electronic structure, and thermoelectric properties of Ca5Al2Sb6, J. Mater. Chem. 21 (2011), pp. 12497–12502.10.1039/c1jm11463 h
  • J.P. Perdew and A. Zunger, Self-interaction correction to density-functional approximations for many-electron systems, Phys. Rev. B 23 (1981), pp. 5048–5079.10.1103/PhysRevB.23.5048
  • S.S. Stoyko, L.H. Voss, H. He, and S. Bobev, Synthesis, crystal and electronic structures of the pnictides AE3TrPn3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, As), Crystals 5 (2015), pp. 433–446.10.3390/cryst5040433
  • S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M.C. Payne, First principles methods using CASTEP, Z. Kristallogr. 220 (2005), pp. 567–570.
  • P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2 k: An Augmented plane wave plus local orbitals program for calculating crystal properties, Vienna University of Technology, Vienna, 2001.
  • D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B. 41 (1990), pp. 7892–7895.10.1103/PhysRevB.41.7892
  • J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X.L. Zhou, and K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces, Phys. Rev. Lett. 100 (2008), p. 136406.10.1103/PhysRevLett.100.136406
  • H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976), pp. 5188–5192.10.1103/PhysRevB.13.5188
  • P. Dufek, P. Blaha, and K. Schwarz, Applications of Engel and Vosko’s generalized gradient approximation in solids, Phys. Rev. B 50 (1994), pp. 7279–7283.10.1103/PhysRevB.50.7279
  • E. Engel and S.H. Vosko, Exact exchange-only potentials and the virial relation as microscopic criteria for generalized gradient approximations, Phys. Rev. B 47 (1993), pp. 13164–13174.10.1103/PhysRevB.47.13164
  • X. Zhu, S. Fahy, K.J. Chang, and S.G. Louis, Ab initio calculation of pressure coefficients of band gaps of silicon: Comparison of the local-density approximation and quasiparticle results, Phys. Rev. B 39 (1989), pp. 7840–7847.10.1103/PhysRevB.39.7840
  • P.P. Rushton, D.J. Tozer, and S.J. Clark, Nonlocal density-functional description of exchange and correlation in silicon, Phys. Rev. B. 65 (2002), p. B864.10.1103/PhysRevB.65.235203
  • B. Králik, E.K. Chang, and S.G. Louie, Structural properties and quasiparticle band structure of zirconia, Phys. Rev. B 57 (1998), pp. 7027–7036.10.1103/PhysRevB.57.7027
  • F. Tran and P. Blaha, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009), p. 226401.10.1103/PhysRevLett.102.226401
  • P.E. Blöchl, O. Jepsen, and O. K. Andersen, Improved tetrahedron method for Brillouin-zone integrations, Phys. Rev. B 49 (1994), pp. 16223–16233.10.1103/PhysRevB.49.16223
  • C.A. Ponce, R.A. Casali, M.A. Caravaca, Ab initio study of mechanical and thermo-acoustic properties of tough ceramics: Applications to HfO2 in its cubic and orthorhombic phase. J. Phys.: Condens. Mater. 20 (2008), p. 045213.
  • A. Bouhemadou, R. Khenata, M. Chegaar, and S. Maabed, First-principles calculations of structural, elastic, electronic and optical properties of the antiperovskite AsNMg3, Phys. Lett. A 371 (2007), pp. 337–343.10.1016/j.physleta.2007.06.030
  • D.C. Wallace, Thermodynamics of Crystals, John Wiley, New York, NY, 1972.
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Lond. A. 65 (1952), pp. 349–354.10.1088/0370-1298/65/5/307
  • W. Voigt, Lehrbuch der Kristallphysik, Taubner, Leipzig, 1928.
  • A. Reuss, Berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung fur Einkristalle, Zeitschrift Angew. Math. Mech. 9 (1929), pp. 49–58.10.1002/(ISSN)1521-4001
  • A. Bedjaoui, A. Bouhemadou, S. Aloumi, R. Khenata, S. Bin-Omran, Y. Al-Douri, F. Saad Saoud, and S. Bensalem, Structural, elastic, electronic and optical properties of the novel quaternary diamond-like semiconductors Cu2MgSiS4 and Cu2MgGeS4, Solid State Sci. 70 (2017), pp. 21–35.10.1016/j.solidstatesciences.2017.06.007
  • E. Schreiber, O.L. Anderson, and N. Soga, Elastic Constants and Their Measurements, McGraw-Hill, New York, NY, 1973.
  • J.W. Soh, H.M. Lee, and H.-S. Kwon, Relation between Poisson’s ratio and ionicity in simple binary cubic compounds, J. Alloys Compd. 194 (1993), pp. 119–125.10.1016/0925-8388(93)90656-8
  • S.F. Pugh, Relations between the Elastic Moduli and the plastic properties of polycrystalline pure metals, Phil. Mag. 45 (1954), pp. 823–843.10.1080/14786440808520496
  • S. Chen, Y. Sun, Y.-H. Duan, B. Huang, and M.-J. Peng, Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations, J. Alloys Compd. 630 (2015), pp. 202–208.10.1016/j.jallcom.2015.01.038
  • D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol. 8 (1992), pp. 345–349.10.1179/mst.1992.8.4.345
  • P. Jund, R. Viennois, X. Tao, K. Niedziolka, and J.C. Tédenac, Physical properties of thermoelectric zinc antimonide using first-principles calculations, Phys. Rev. B 85 (2012), p. 423.10.1103/PhysRevB.85.224105
  • A.L. Anderson, A simplified method for calculating the debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), pp. 909–917.10.1016/0022-3697(63)90067-2
  • V. Tvergaard and J.W. Hutchinson, Microcracking in ceramics induced by thermal expansion anisotropy, J. Am. Ceram. Soc. 71 (1988), pp. 157–166.10.1111/jace.1988.71.issue-3
  • B. Xiao, J. Feng, C.T. Zhou, Y.H. Jiang, and R. Zhou, Mechanical properties and chemical bonding characteristics of Cr7C3 type multicomponent carbides, J. Appl. Phys. 109 (2011), p. 023507.10.1063/1.3532038
  • K. Lau and A.K. McCurdy, Elastic anisotropy factors in orthorhombic, tetragonal, and hexagonal Crystals, Phys. Rev. B. 58 (1998), pp. 8980–8984.10.1103/PhysRevB.58.8980
  • P. Ravindran, L. Fast, P.A. Korzhavyi, and B. Johansson, Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2, J. Appl. Phys. 84 (1998), pp. 4891–4904.10.1063/1.368733
  • D.H. Chung and W.R. Buessem, The Elastic Anisotropy of Crystals, in Proceeding of International Symposium 2, F.W. Vahldiek and S.A. Mersol, eds., Plenum Press, New York, NY, 1968, pp. 217–245.
  • K.B. Panda and K.S.R. Chandran, Determination of elastic constants of titanium diboride (TiB2) from first principles using FLAPW implementation of the density functional theory, Comput. Mater. Sci. 35 (2006), pp. 134–150.
  • S. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), p. 055504.10.1103/PhysRevLett.101.055504
  • J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, Great Britain, 1957.
  • F. Wooten, Optical Proprieties of Solid, Academic, New York, NY, 1972.
  • M. Alouani and J.M. Wills, Calculated optical properties of Si, Ge, and GaAs under hydrostatic pressure, Phys. Rev. B 54 (1996), pp. 2480–2490.10.1103/PhysRevB.54.2480
  • M. Fox, Optical Properties of Solids, Oxford University Press, New York, NY, 2001.
  • M. Dressel and G. Gruner, Electrodynamics of solids: Optical properties of electrons in matter, Cambridge University Press, Cambridge, 2002.10.1017/CBO9780511606168
  • A. Bouhemadou and R. Khenata, Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3, Comput. Mater. Sci. 39 (2007), pp. 803–807.10.1016/j.commatsci.2006.10.003
  • R. Saniz, L.H. Ye, T. Shishidou, and A.J. Freeman, Structural, electronic, and optical properties of NiAl3: first-principles calculations, Phys. Rev. B. 74 (2006), pp. 014209.
  • D. Yonghua, M. Lishi, L. Ping, and C. Yong, First-principles calculations of electronic structures and optical, phononic, and thermodynamic properties of monoclinic α-spodumene, Ceram. Internat. 43 (2017), pp. 6312–6321.10.1016/j.ceramint.2017.02.038
  • D. Cherrad, D. Maouche, M. Boudissa, M. Reffas, L. Louail, M. Maamache, K. Haddadi, and Y. Medkour, Ultra soft pseudo potential investigation of fundamental physical properties of CaXO3 (X=Sn and Hf) distorted perovskites: A reference study to the perfect perovskites, Physica B 429 (2013), pp. 95–105.10.1016/j.physb.2013.08.002
  • G.K.H. Madsen and D.J.S. Singh, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun. 175 (2006), pp. 67–71.10.1016/j.cpc.2006.03.007
  • P.C. Sreeparvathy, V. Kanchana, and G. Vaitheeswaran, Thermoelectric properties of zinc based pnictide semiconductors, J. App. Phys. 119 (2016), p. 085701.10.1063/1.4942011
  • T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, and J.O. Sofo, Transport coefficients from first-principles calculations, Phys. Rev. B 68 (2003), p. 331.10.1103/PhysRevB.68.125210

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.