497
Views
4
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effect of temperature on the anisotropy of AZ31 magnesium alloy rolling sheet under high strain rate deformation

, , , &
Pages 1068-1086 | Received 24 Aug 2017, Accepted 08 Jan 2018, Published online: 22 Jan 2018

References

  • B.L. Mordikeand T. Ebert, Magnesium: properties — applications — potential, Mater. Sci. Eng. A302 (2001), pp. 37–45.
  • L. Jiang, J.J. Jonas, A.A. Luo, A.K. Sachdev, and S. Godet, Influence of 10*******1 extension twinning on the flow behavior of AZ31 Mg alloy, Mater. Sci. Eng. A 445–446 (2007), pp. 302–309.10.1016/j.msea.2006.09.069
  • Y. Prasad and K.P. Rao, Effect of crystallographic texture on the kinetics of hot deformation of rolled Mg–3Al–1Zn alloy plate, Mater. Sci. Eng. A 432 (2006), pp. 170–177.10.1016/j.msea.2006.05.159
  • H. Watanabe, T. Mukai, and K. Ishikawa, Differential speed rolling of an AZ31 magnesium alloy and the resulting mechanical properties, J. Mater. Sci. 39 (2004), pp. 1477–1480.10.1023/B:JMSC.0000013922.16079.d3
  • F.Z. Hassani, M. Ketabchi, and M.T. Hassani, Effect of twins and non-basal planes activated by equal channel angular rolling process on properties of AZ31 magnesium alloy, J. Mater. Sci. 46 (2011), pp. 7689–7695.10.1007/s10853-011-5748-5
  • H. Zhang, Y. Yan, J.F. Fan, W.L. Cheng, H.J. Roven, B.S. Xu, and H.B. Dong, Improved mechanical properties of AZ31 magnesium alloy plates by pre-rolling followed by warm compression, Mater. Sci. Eng. A 618 (2014), pp. 540–545.10.1016/j.msea.2014.09.066
  • H. Zhang, Y. Liu, J.F. Fan, H.J. Roven, W.L. Cheng, B.S. Xu, and H.B. Dong, Microstructure evolution and mechanical properties of twinned AZ31 alloy plates at lower elevated temperature, J. Alloys Compd. 615 (2014), pp. 687–692.10.1016/j.jallcom.2014.07.045
  • H. Zhang, G.S. Huang, J.F. Fan, H.J. Roven, B.S. Xu, and H.B. Dong, Deep drawability and drawing behaviour of AZ31 alloy sheets with different initial texture, J. Alloys Compd. 615 (2014), pp. 302–310.10.1016/j.jallcom.2014.06.199
  • A. Couret and D. Caillard, Prismatic glide in divalent h.c.p. metals, Philos. Mag. A 63 (1991), pp. 1045–1057.10.1080/01418619108213936
  • T. Obara, H. Yoshinga, and S. Morozumi, {11********2}〈1123〉 Slip system in magnesium, Acta Metall. 21 (1973), pp. 845–853.10.1016/0001-6160(73)90141-7
  • S. Lay, P. Ayed, and G. Nouet, A study of (0112) twin deviating from exact orientation in magnesium, Acta Metall. Mater. 40 (1992), pp. 2351–2359.10.1016/0956-7151(92)90154-7
  • M.D. Nave and M.R. Barnett, Microstructures and textures of pure magnesium deformed in plane-strain compression, Scr. Mater. 51 (2004), pp. 881–885.10.1016/j.scriptamat.2004.07.002
  • J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, and K. Maruyama, The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ31B magnesium alloys, Acta Mater. 51 (2003), pp. 2055–2065.10.1016/S1359-6454(03)00005-3
  • Y. Chino, K. Kimura, M. Hakamada, and M. Mabuchi, Mechanical anisotropy due to twinning in an extruded AZ31 Mg alloy, Mater. Sci. Eng. A 485 (2008), pp. 311–317.10.1016/j.msea.2007.07.076
  • Y. Chino, K. Kimura, and M. Mabuchi, Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy, Mater. Sci. Eng. A 486 (2008), pp. 481–488.10.1016/j.msea.2007.09.058
  • Y.N. Wang and J.C. Huang, The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy, Acta Mater. 55 (2007), pp. 897–905.10.1016/j.actamat.2006.09.010
  • S.R. Agnew and Ö. Duygulu, Plastic anisotropy and the role of non-basal slip in magnesium alloy AZ31B, Int. J. Plast. 21 (2005), pp. 1161–1193.10.1016/j.ijplas.2004.05.018
  • Q.W. Dai, D.F. Zhang, and X. Chen, On the anisotropic deformation of AZ31 Mg alloy under compression, Mater. Des. 32 (2011), pp. 5004–5009.10.1016/j.matdes.2011.06.017
  • M.T. Tucker, M.F. Horstemeyer, P.M. Gullett, H.E. Kadiri, and W.R. Whittington, Anisotropic effects on the strain rate dependence of a wrought magnesium alloy, Scr. Mater. 60 (2009), pp. 182–185.10.1016/j.scriptamat.2008.10.011
  • R. Gehrmann, M.M. Frommert, and G. Gottstein, Texture effects on plastic deformation of magnesium, Mater. Sci. Eng. A 395 (2005), pp. 338–349.10.1016/j.msea.2005.01.002
  • M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell, Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn, Acta Mater. 52 (2004), pp. 5093–5103.10.1016/j.actamat.2004.07.015
  • T. Walde and H. Riedel, Modeling texture evolution during hot rolling of magnesium alloy AZ31, Solid State Phenom. 105 (2005), pp. 285–290.10.4028/www.scientific.net/SSP.105
  • H. Li, E. Hsu, J. Szpunar, H. Utsunomiya, and T. Sakai, Deformation mechanism and texture and microstructure evolution during high-speed rolling of AZ31B Mg sheets, J. Mater. Sci. 43 (2008), pp. 7148–7156.10.1007/s10853-008-3021-3
  • J. Jiang, A. Godfrey, W. Liu, and Q. Liu, Identification and analysis of twinning variants during compression of a Mg–Al–Zn alloy, Scr. Mater. 58 (2008), pp. 122–125.10.1016/j.scriptamat.2007.09.047
  • I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, and I. Hurtado, Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates, Acta Mater. 58 (2010), pp. 2988–2998.10.1016/j.actamat.2010.01.029
  • M.R. Barnett, Twinning and the ductility of magnesium alloys: Part II. ‘Contraction’ twins, Mater. Sci. Eng. A 464 (2007), pp. 1–7.10.1016/j.msea.2006.12.037
  • M.R. Barnett, A Taylor model based description of the proof stress of magnesium AZ31 during hot working, Metall. Mater. Trans. A 34 (2003), pp. 1799–1806.10.1007/s11661-003-0146-5
  • R.V. Mises, Mechanik der plastischen Formänderung von Kristallen, Z. Angew. Math. Mech. 8 (1928), pp. 161–185.10.1002/(ISSN)1521-4001
  • M.H. Yoo and J.K. Lee, Deformation twinning in h.c.p. metals and alloys, Mag. A 63 (1991), pp. 987–1000.10.1080/01418619108213931
  • M.H. Yoo, Slip, twinning, and fracture in hexagonal close-packed metals, Metall. Trans. A 12 (1981), pp. 409–418.10.1007/BF02648537
  • G. Wan, B.L. Wu, Y.H. Zhao, Y.D. Zhang, and C. Esling, Strain-rate sensitivity of textured Mg–3.0Al–1.0Zn alloy (AZ31) under impact deformation, Scr. Mater. 65 (2011), pp. 461–464.10.1016/j.scriptamat.2011.05.020
  • G. Wan, B.L. Wu, Y.D. Zhang, G.Y. Sha, and C. Esling, Anisotropy of dynamic behavior of extruded AZ31 magnesium alloy, Mater. Sci. Eng. A 527 (2010), pp. 2915–2924.10.1016/j.msea.2010.01.023
  • S.R. Kada, Deformation of magnesium alloys during laboratory scale in situ X-ray diffraction, Ph.D. diss., Deakin University, 2013.
  • B.L. Wu, Y.H. Zhao, X.H. Du, Y.D. Zhang, F. Wagner, and C. Esling, Ductility enhancement of extruded magnesium via yttrium addition, Mater. Sci. Eng. A 527 (2010), pp. 4334–4340.10.1016/j.msea.2010.03.054
  • Z. Keshavarz and M.R. Barnett, EBSD analysis of deformation modes in Mg–3Al–1Zn, Scr. Mater. 55 (2006), pp. 915–918.10.1016/j.scriptamat.2006.07.036
  • A. Chapuis and J.H. Driver, Temperature dependency of slip and twinning in plane strain compressed magnesium single crystals, Acta Mater. 59 (2011), pp. 1986–1994.10.1016/j.actamat.2010.11.064
  • S.G. Hong, S.H. Park, and Chong Soo Lee, Role of {10–12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy, Acta Mater. 58 (2010), pp. 5873–5885.10.1016/j.actamat.2010.07.002
  • L. Jiang, J.J. Jonas, R.K. Mishra, A.A. Luo, A.K. Sachdev, and S. Godet, Twinning and texture development in two Mg alloys subjected to loading along three different strain paths, Acta Mater. 55 (2007), pp. 3899–3910.10.1016/j.actamat.2007.03.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.