114
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

First-principles study of the structural and elastic properties of AuxV1–x and AuxNb1–x alloys

Pages 1099-1113 | Received 01 May 2017, Accepted 11 Jan 2018, Published online: 29 Jan 2018

References

  • S.A. Kuznetsov, Electrochemistry of refractory metals in molten salts: Application for the creation of new and functional materials, Pure Appl. Chem. 81 (2009), pp. 1423–1439.
  • D.  Chen, F.  Deng, C.  Ding, Y.  Wang, and H. Li, An Nb-doped nickel oxide–carbon nanotubes composite enhanced electrochemical DNA biosensor for detection of lead(II) ion, Int. J. Electrochem. Sci. 10 (2015), p. 9015.
  • I. Nowak and M. Ziolek, Niobium compounds: Preparation, characterization, application in heterogeneous catalysis, Chem. Rev. 99 (1999), pp. 3603–3624.
  • G. F. Vander Voort, Metallography: Principles and Practice, ASM International, McGrow Hill, New York, 1984.
  • F. Cardarelli, Materials Handbook: A Concise Desktop Reference, Springer-Verlag, London, 2008.
  • H. Warlimont, Springer Handbook of Condensed Matter and Materials Data, Springer-Verlag, Berlin, Heidelberg, 2005.
  • R. Ferro, A. Saccone, D. Macciò, and S. Delfino, A survey of gold intermetallic chemistry, Gold Bull. 36(2) (2003), pp. 39–50.10.1007/BF03214868
  • E. Uyama, S. Inui, K. Hamada, E. Honda, and K. Asaoka, Magnetic susceptibility and hardness of Au–xPt–yNb alloys for biomedical applications, Acta Biomater. 9 (2013), pp. 8449–8453.10.1016/j.actbio.2013.05.028
  • S. Inui, E. Uyama, and K. Hamada, Volume magnetic susceptibility design and hardness of Au–Ta alloys and Au–Nb alloys for MRI-compatible,  biomedical applications, Biomed. Phys. Eng. Express 3 (2016), p. 015025.
  • E. Eisenbarth, D. Velten, M. Müller, R. Thull, and J. Breme, Biocompatibility of β-stabilizing elements of titanium alloys, Biomaterials 25 (2004), pp. 5705–5713.10.1016/j.biomaterials.2004.01.021
  • E.C. Bain and N.Y. Dunkirk, The nature of martensite, Trans. Am. Inst. Min. Metall. Eng. 70 (1924), pp. 25–46.
  • O.K. Andersen, O. Jepsen, and G. Krier, edited by V. Kumar, O.K. Andersen, and A. Mookerjee, Lectures on Methods of Electronic Structure Calculations, World Scientific Publishing Co, Singapore, 1994.
  • O.K. Andersen, C. Arcangeli, R.W. Tank, T. Saha-Dasgupta, G. Krier, O. Jepsen, and I. Dasgupta, Third-generation TB-LMTO, in Tight-Binding Approach to Computational Materials Science, L. Colombo, A. Gonis and P. Turchi, eds., MRS Symposia Proceedings No. 491, Materials Research Society, Pittsburgh, PA, 1998.
  • L. Vitos, H.L. Skriver, B. Johansson, and J. Kollár, Application of the exact muffin-tin orbitals theory: The spherical cell approximation, Comput. Mater. Sci. 18 (2000), pp. 24–38.10.1016/S0927-0256(99)00098-1
  • L. Vitos, Total-energy method based on the exact muffin-tin theory, Phys. Rev. B 64 (2001), p. 014107-11.10.1103/PhysRevB.64.014107
  • L. Vitos, I.A. Abrikosov, and B. Johansson, Anisotropic lattice distortions in random alloys from first-principles theory, Phys. Rev. Lett. 87 (2001), p. 156401-4.10.1103/PhysRevLett.87.156401
  • L. Vitos, The EMTO Method and Applications, Computational Quantum Mechanics for Materials Engineers, Springer-Verlag, London, 2007.
  • P. Hohenberg and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136 B (1964), pp. 864–871.
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868.10.1103/PhysRevLett.77.3865
  • H.L. Skriver, Crystal structure from one-electron theory, Phys. Rev. B 31 (1985), pp. 1909–1923.10.1103/PhysRevB.31.1909
  • J. Kollár, L. Vitos, and H.L. Skriver, Electronic structure and physical properties of solids: The uses of the LMTO method, Lecture Notes in Physics, H. Dreyssé, eds., Springer-Verlag, Berlin, 2000.
  • W. Kohn and L.J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. 140 (1965), pp. A1133–A1138.10.1103/PhysRev.140.A1133
  • N. Al-Zoubi, B. Johansson, G. Nilson, and L. Vitos, The Bain path of paramagnetic Fe–Cr based alloys, J. Appl. Phys 110 (2011), p. 013708-8.10.1063/1.3603024
  • N. Al-Zoubi, N.V. Skorodumova, A. Medvedeva, J. Andersson, G. Nilson, B. Johansson, and L. Vitos, Tetragonality of carbon-doped ferromagnetic iron alloys: A first-principles theory, Phys Rev B 85 (2012), p. 014112.
  • N. Al-Zoubi, X. Li, S. Schönecker, B. Johansson, and L. Vitos, Influence of manganese on the bulk properties of Fe–Cr–Mn alloys: A first-principles study, Phys. Scr. 89 (2014), p. 125702.10.1088/0031-8949/89/12/125702
  • H.L. Zhang, N. Al-Zoubi, B. Johansson, and L. Vitos, Alloying effects on the elastic parameter of ferromagnetic and paramagnetic Fe from first-principles theory, J. Appl. Phys 110 (2011), p. 073707.10.1063/1.3644907
  • M. Ropo, K. Kokko, M.P.J. Punkkinen, S. Hogmark, J. Kollár, B. Johansson, and L. Vitos, Theoretical evidence of the compositional threshold behavior of FeCr surfaces, Phys. Rev. B 76 (2007), p. 220401-4.10.1103/PhysRevB.76.220401
  • T. Gebhardt, D. Music, D. Kossmann, M. Ekholm, I.A. Abrikosov, L. Vitos, and J.M. Schneider, Elastic properties of fcc Fe–Mn–X (X=Al, Si) alloys studied by theory and experiment, Acta Mater. 59 (2011), pp. 3145–3155.10.1016/j.actamat.2011.01.054
  • S. Lu, Q.-M. Hu, B. Johansson, and L. Vitos, Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels, Acta Mater. 59 (2011), pp. 5728–5734.
  • C.-M. Li, H.B. Luo, Q.-M. Hu, R. Yang, B. Johansson, and L. Vitos, First-principles study of the elastic properties of In–Tl random alloys, Phys. Rev. B 82 (2010), p. 024208-8.10.1103/PhysRevB.82.024201
  • L. Vitos, J. Kollár, and H.L. Skriver, Ab initio full-charge density study of the atomic volume of α-phase Fr, Ra, Ac, Th, Pa, U, Np and Pu, Phys. Rev. B 55 (1997), pp. 4947–4952.10.1103/PhysRevB.55.4947
  • B. Magyari-Köpe, L. Vitos, and G. Grimvall, Anomalous behavior of lattice parameters and elastic constants in hcp Ag–Zn alloys, Phys. Rev. B 70 (2004), p. 052104-4.10.1103/PhysRevB.70.052102
  • N.I. Al-Zoubi, M.P.J. Punkkinen, B. Johansson, and L. Vitos, Completeness of the exact muffin-tin orbitals: Application to hydrogenated alloys, Phys. Rev. B 81 (2010), p. 045122-10.10.1103/PhysRevB.81.045122
  • N.  Al-Zoubi, S.  Schönecker, B.  Johansson, and L. Vitos, Assessing the Exact Muffin-tin Orbitals method for the Bain path of metals, Phil. Mag. 97 (2017), pp. 1243–1264.
  • B. Magyari-Köpe, L. Vitos, G. Grimvall, B. Johansson, and J. Kollár, Low-temperature crystal structure of CaSiO3 perovskite: An ab initio total energy study, Phys. Rev. B 65 (2002), p. 193107.10.1103/PhysRevB.65.193107
  • B. Magyari-Köpe, L. Vitos, B. Johansson, and J. Kollár, High-pressure structure of ScAlO3 perovskite, J. Geophys. Res. 107 (2002), p. 2136.
  • N. Al-Zoubi, M.P.J. Punkkinen, B. Johansson, and L. Vitos, Influence of magnesium on hydrogenated ScAl1–xMgx alloys: A first theoretical study, Comp. Mater. Sci. 50 (2011), pp. 2848–2853.10.1016/j.commatsci.2011.04.040
  • P. Söderlind, O. Eriksson, J.M. Wills, and A.M. Boring, Theory of elastic constants of cubic transition metals and alloys, Phys. Rev. B 48 (1993), pp. 5844–5851.10.1103/PhysRevB.48.5844
  • M. J. Mehl and D. A. Papaconstantopoulos, Applications of a tight-binding total-energy method for transition and noble metals: Elastic constants, vacancies, and surfaces of monatomic metals, Phys. Rev. B 54 (1996). p. 4519.10.1103/PhysRevB.54.4519
  • S.L. Shang, A. Saengdeejing, Z.G. Mei, D.E. Kim, H. Zhang, S. Ganeshan, Y. Wang, and Z.K. Liu, First-principles calculations of pure elements: Equations of state and elastic stiffness constants, Comp. Mat. Sci 48 (2010). pp. 813–826.10.1016/j.commatsci.2010.03.041
  • D.A. Young, Phase Diagrams of the Elements, University of California Press, Berkeley, 1991.
  • J. Friedel, The Physics of Metals, J.M. Ziman eds., Cambridge University Press, New York, 1969.
  • M.J. Mehl, A. Aguayo, L.L. Boyer, Absence of metastable states in strained monatomic cubic crystals, Phys. Rev. B (2004), p. 014105.10.1103/PhysRevB.70.014105
  • V.L. Sliwko, P. Mohn, K. Schwarz, and P. Blaha, The fcc – bcc structural transition: I. A band theoretical study for Li, K, Rb, Ca, Sr, and the transition metals Ti and V, J. Phys. Condens. Matter. 8 (1996), pp. 799–815.
  • J.M. Wills, O. Eriksson, P. Söderlind, and A.M. Boring, Trends of the elastic constants of cubic transition metals, Phys. Rev. Lett. 68 (1992), pp. 2802–2805.10.1103/PhysRevLett.68.2802
  • P.J. Craievich, J.M. Sanchez, R.E. Watson, and M. Weinert, Structural instabilities of excited phases, Phys. Rev. B 55 (1997), pp. 787–797.10.1103/PhysRevB.55.787
  • P.J. Craievich, M. Weinert, J.M. Sanchez, and R.E. Watson, Local stability of nonequilibrium phases, Phys. Rev. Lett 72 (1994), p. 3076.10.1103/PhysRevLett.72.3076

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.