495
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Size effects of nano-spaced basal stacking faults on the strength and deformation mechanisms of nanocrystalline pure hcp metals

, , &
Pages 1186-1203 | Received 17 Sep 2017, Accepted 22 Jan 2018, Published online: 31 Jan 2018

References

  • B.L. Mordike and T. Ebert, Magnesium-properties-applications-potential, Mater. Sci. Eng. A 302 (2001), pp. 37–45.10.1016/S0921-5093(00)01351-4
  • X.L. Wu, K.M. Youssef, C.C. Koch, S.N. Mathaudhu, L.J. Kecskés, and Y.T. Zhu, Deformation twinning in a nanocrystalline hcp Mg alloy, Scr. Mater. 64 (2011), pp. 213–216.10.1016/j.scriptamat.2010.10.024
  • Y.M. Wang, R.T. Ott, T. van Buuren, T.M. Willey, M.M. Biener, and A.V. Hamza, Controlling factors in tensile deformation of nanocrystalline cobalt and nickel, Phys. Rev. B 85 (2012), p. 44.10.1103/PhysRevB.85.014101
  • R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe, Paradox of strength and ductility in metals processed by severe plastic deformation, J. Mater. Res. 17 (2002), pp. 5–8.10.1557/JMR.2002.0002
  • R.Z. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nature Mater. 3 (2004), pp. 511–516.10.1038/nmat1180
  • X.L. Wu, P. Jiang, L. Chen, F.P. Yuan, and Y.T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. USA 111 (2014), pp. 7197–7201.10.1073/pnas.1324069111
  • X.L. Wu, M.X. Yang, F.P. Yuan, G.L. Wu, Y.J. Wei, X.X. Huang, and Y.T. Zhu, Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility, Proc. Natl. Acad. Sci. USA 112 (2015), pp. 14501–14505.10.1073/pnas.1517193112
  • X.L. Wu, F.P. Yuan, M.X. Yang, P. Jiang, C.X. Zhang, L. Chen, Y.G. Wei, and E. Ma, Nanodomained nickel unite nanocrystal strength with coarse-grain ductility, Sci. Rep. 5 (2015), p. 349.10.1038/srep11728
  • M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006), pp. 427–556.10.1016/j.pmatsci.2005.08.003
  • L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu, Ultrahigh strength and high electrical conductivity in copper, Science 304 (2004), pp. 422–426.10.1126/science.1092905
  • K. Lu, L. Lu, and S. Suresh, Strengthening materials by engineering coherent internal boundaries at the nanoscale, Science 324 (2009), pp. 349–352.10.1126/science.1159610
  • X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao, Dislocation nucleation governed softening and maximum strength in nano-twinned metals, Nature 464 (2010), pp. 877–880.10.1038/nature08929
  • M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: a constitutive description, Acta Mater. 49 (2001), pp. 4025–4039.10.1016/S1359-6454(01)00300-7
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminum by molecular-dynamics simulation, Nature Mater. 1 (2002), pp. 45–49.10.1038/nmat700
  • X.L. Wu and Y.T. Zhu, Inverse grain-size effect on twinning in nanocrystalline Ni, Phys. Rev. Lett. 101 (2008), p. 025503.10.1103/PhysRevLett.101.025503
  • J.Y. Zhang, G. Liu, R.H. Wang, J. Li, J. Sun, and E. Ma, Double-inverse grain size dependence of deformation twinning in nanocrystalline Cu, Phys. Rev. B 81 (2010), p. 518.10.1103/PhysRevB.81.172104
  • X.Y. Zhang, Y.T. Zhu, and Q. Liu, Deformation twinning in polycrystalline Co during room temperature dynamic plastic deformation, Scr. Mater. 63 (2010), pp. 387–390.10.1016/j.scriptamat.2010.04.031
  • Y.T. Zhu, X.Y. Zhang, H.T. Ni, F. Xu, J. Tu, and C. Lou, Formation of twins in polycrystalline cobalt during dynamic plastic deformation, Mater. Sci. Eng. A 548 (2012), pp. 1–5.10.1016/j.msea.2012.03.017
  • Y.T. Zhu, X.Y. Zhang, and Q. Liu, Observation of twins in polycrystalline cobalt containing face-center-cubic and hexagonal-close-packed phases, Mater. Sci. Eng. A 528 (2011), pp. 8145–8149.10.1016/j.msea.2011.07.062
  • X. Wu, N. Tao, Y. Hong, G. Liu, B. Xu, J. Lu, and K. Lu, Strain-induced grain refinement of cobalt during surface mechanical attrition treatment, Acta Mater. 53 (2005), pp. 681–691.10.1016/j.actamat.2004.10.021
  • K. Edalati, S. Toh, M. Arita, M. Watanabe, and Z. Horita, High-pressure torsion of pure cobalt: hcp-fcc phase transformations and twinning during severe plastic deformation, Appl. Phys. Lett. 102 (2013), p. 181902.10.1063/1.4804273
  • A.A. Karimpoor, U. Erb, K.T. Aust, and G. Palumbo, High strength nanocrystalline cobalt with high tensile ductility, Scr. Mater. 49 (2003), pp. 651–656.10.1016/S1359-6462(03)00397-X
  • E. Ma, Four approaches to improve the tensile ductility of high-strength nanocrystalline metals, J. Mater. Eng. Perf. 14 (2005), pp. 430–434.10.1361/105994905X56179
  • J. Wang, J.P. Hirth, and C.N. Tomé, (1012) Twinning nucleation mechanisms in hexagonal-close-packed crystals, Acta Mater. 57 (2009), pp. 5521–5530.10.1016/j.actamat.2009.07.047
  • H. Zhou, G.M. Cheng, X.L. Ma, W.Z. Xu, S.N. Mathaudhu, Q.D. Wang, and Y.T. Zhu, Effect of Ag on interfacial segregation in Mg-Gd-Y-(Ag)-Zr alloy, Acta Mater. 95 (2015), pp. 20–29.10.1016/j.actamat.2015.05.020
  • S. Niknejad, S. Esmaeili, and N.Y. Zhou, The role of double twinning on transgranular fracture in magnesium AZ61 in a localized stress field, Acta Mater. 102 (2016), pp. 1–16.10.1016/j.actamat.2015.09.026
  • B. Li and E. Ma, Zonal dislocations mediating {1011}<1012> twinning in magnesium, Acta Mater. 57 (2009), pp. 1734–1743.10.1016/j.actamat.2008.12.016
  • X.Y. Zhang, B. Li, and Q. Liu, Non-equilibrium basal stacking faults in hexagonal close-packed metals, Acta Mater. 90 (2015), pp. 140–150.
  • D.H. Kim, M.V. Manuel, F. Ebrahimi, J.S. Tulenko, and S.R. Phillpot, Deformation process in 1120-textured nanocrystalline Mg by molecular dynamics simulation, Acta Mater. 58 (2010), pp. 6217–6229.10.1016/j.actamat.2010.07.036
  • W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu, Ultrastrong Mg alloy via nano-spaced stacking faults, Mater. Res. Lett. 1 (2013), pp. 61–66.10.1080/21663831.2013.765927
  • W.W. Jian, G. M. Cheng, W.Z. Xu, C.C. Koch, Q.D. Wang, Y.T. Zhu, and S.N. Mathaudhu, Physics and model of strengthening by parallel stacking faults, Appl. Phys. Lett. 103 (2013), p. 133108.10.1063/1.4822323
  • H. Zhou, G.M. Cheng, X.L. Ma, W.Z. Xu, S.N. Mathaudhu, Q.D. Wang, and Y.T. Zhu, Effect of Ag on interfacial segregation in Mg-Gd-Y-(Ag)-Zr alloy, Acta Mater. 95 (2015), pp. 20–29.10.1016/j.actamat.2015.05.020
  • L. Zhang, J.H. Zhang, C. Xu, Y.B. Jing, J.P. Zhuang, R.Z. Wu, and M.L. Zhang, Formation of stacking faults for improving the performance of biodegradable Mg-Ho-Zn alloy, Mater. Lett. 133 (2014), pp. 158–162.10.1016/j.matlet.2014.06.171
  • C. Xu, J.H. Zhang, S.J. Liu, Y.B. Jing, Y.F. Jiao, L.J. Xu, L. Zhang, F.C. Jiang, M.L. Zhang, and R.Z. Wu, Microstructure, mechanical and damping properties of Mg-Er-Gd-Zn alloy reinforced with stacking faults, Mater. Des. 79 (2015), pp. 53–59.10.1016/j.matdes.2015.04.037
  • J.H. Zhang, C. Xu, Y.B. Jing, S.H. Lv, S.J. Liu, D.Q. Fang, J.P. Zhuang, M.L. Zhang, and R.Z. Wu, New horizon for high performance Mg-based biomaterial with uniform degradation behavior: Formation of stacking faults, Sci. Rep. 5 (2015), p. 90.10.1038/srep13933
  • G.P. Zheng, Y.M. Wang, and M. Li, Atomistic simulation studies on deformation mechanism of nanocrystalline cobalt, Acta Mater. 53 (2010), pp. 3893–3901.
  • G.P. Zheng, Grain-size effect on plastic flow in nanocrystalline cobalt by atomistic simulation, Acta Mater. 55 (2007), pp. 149–159.10.1016/j.actamat.2006.07.034
  • G.P.P. Pun and Y. Mishin, Embedded-atom potential for hcp and fcc cobalt, Phys. Rev. B 86 (2012), p. 949.10.1103/PhysRevB.86.134116
  • X.-Y. Liu, P.P. Ohotnicky, J.B. Adams, and C. Lane Rohrer, and R.W. Hyland Jr., Anisotropic surface segregation in Al-Mg alloy, Surf. Sci. 373 (1997), pp. 357–370.10.1016/S0039-6028(96)01154-5
  • J. Schiotz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301 (2003), pp. 1357–1359.10.1126/science.1086636
  • J. Schiøtz, F.D. Di Tolla, and K.W. Jacobsen, Softening of nanocrystalline metals at very small grain sizes, Nature 391 (1998), pp. 561–563.10.1038/35328
  • F.P. Yuan and X.L. Wu, Atomistic scale fracture behaviors in hierarchically nanotwinned metals, Philos. Mag. 93 (2013), pp. 3248–3259.10.1080/14786435.2013.805278
  • J.B. Jeon, B.J. Lee, and Y.W. Chang, Molecular dynamics simulation study of the effect of grain size on the deformation behavior of nanocrystalline body-centered cubic iron, Scr. Mater. 64 (2011), pp. 494–497.10.1016/j.scriptamat.2010.11.019
  • W. Wang, F.P. Yuan, P. Jiang, and X.L. Wu, Size effects of lamellar twins on the strength and deformation mechanisms of nanocrystalline hcp cobalt, Sci. Rep. 7 (2017), p. 912.10.1038/s41598-017-09919-2
  • B. Li, P.F. Yan, M.L. Sui, and E. Ma, Transmission electron microscopy study of stacking faults and their interaction with pyramidal dislocations in deformed Mg, Acta Mater. 58 (2010), pp. 173–179.10.1016/j.actamat.2009.08.066
  • A. Misra, J.P. Hirth, and R.G. Hoagland, Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites, Acta Mater. 53 (2005), pp. 4817–4824.10.1016/j.actamat.2005.06.025
  • P.M. Anderson, J.P. Hirth, and J. Lothe, Theory of dislocations, Cambridge University Press, Cambridge, 2017.
  • X.Y. Zhang, B. Li, J. Tu, Q. Sun, and Q. Liu, Non-classical twinning behavior in dynamically deformed cobalt, Mater. Res. Lett. 3 (2015), pp. 142–148.10.1080/21663831.2015.1034297
  • H.Y. Song and Y.L. Li, Effect of stacking fault and temperature on deformation behaviors of nanocrystalline Mg, J. Appl. Phys. 112 (2012), p. 054322.10.1063/1.4752024
  • T. Tsuru and D.C. Chrzan, Effect of solute atoms on dislocation motion in Mg: An electronic structure perspective, Sci. Rep. 5 (2015), p. 344.10.1038/srep08793
  • P. Gu, Y.T. Zhu, and S.N. Mathaudhu, A model for <c+a> dislocation transimission across nano-spaced parallel basal stacking faults in a HCP alloy, Philos. Mag. Lett. 95 (2015), pp. 58–66.10.1080/09500839.2015.1008066
  • R.J. Asaro and S. Suresh, Mechanistic models for the activation volume and rate sensitivity in metals with nanocrystalline grains and nano-scale twins, Acta Mater. 53 (2005), pp. 3369–3382.10.1016/j.actamat.2005.03.047

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.