337
Views
6
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Compositional partitioning during the spinodal decomposition in Cu–Ni–Sn alloy

&
Pages 1204-1216 | Received 11 Dec 2017, Accepted 22 Jan 2018, Published online: 09 Feb 2018

References

  • L.H. Schwartz, S. Mahajan, and J.T. Plewes, Spinodal decomposition in a Cu–9wt%Ni–6wt%Sn alloy, Acta Metall. 22 (1974), pp. 601–609.10.1016/0001-6160(74)90157-6
  • L.H. Schwartz and J.T. Plewes, Spinodal decomposition in Cu–9wt%Ni–6wt%Sn alloy: a critical examination of mechanical strength of spinodal alloy, Acta Metall. 22 (1974), pp. 911–921.10.1016/0001-6160(74)90058-3
  • J.T. Plewes, High-strength Cu–Ni–Sn alloys by thermomechanical processing, Metall. Trans. A 6 (1975), pp. 537–544.10.1007/BF02658411
  • B. Ditchek and L.H. Schwartz, Diffraction study of spinodal decomposition in Cu–10w/o Ni–6w/o Sn, Acta Metall. 28 (1979), pp. 807–822.
  • J. Miettinen, Thermodynamic description of the Cu–Ni–Sn system at the Cu–Ni side, Calphad 27 (2003), pp. 309–318.10.1016/j.calphad.2003.10.001
  • G. Ghosh, Ternary Alloy Systems: Phase Diagrams, Crystallographic and Thermodynamic Data critically evaluated by MSIT: Non-ferrous metal systems, Vol. C Part 3, G. Effenberg and S. Ilyenko, eds., Springer, 2007, pp. 303–337.
  • C.B. Basak and M. Krishnan, Applicability of Scheil–Gulliver solidification model in real alloy: A case study with Cu–9%Ni–6%Sn alloy, Phil. Mag. Lett 95 (2015), pp. 376–383.10.1080/09500839.2015.1074296
  • F. Findik, H.M. Flower; Microstructure and hardness development in Cu–30Ni–2.5Cr and Cu–45Ni–10Cr alloys, Mater. Sci. Technol.. 8 (1992), 197–205. 10.1179/mst.1992.8.3.197
  • R. Wagner, Hardening in Spinodally decomposed alloy, Czech. J. Phys. B 31 (1981), p. 198–208.10.1007/BF01959443
  • M. Hillert, A solid-solution model for inhomogeneous systems, Acta Metall. 9 (1961), pp. 525–535.10.1016/0001-6160(61)90155-9
  • A. Das, V. Verma, and C.B. Basak, Elucidating microstructure of spinodal copper alloy through annealing, Mater. Charact. 120 (2016), pp. 152–158.10.1016/j.matchar.2016.08.021
  • A.K. Poswal, A. Agrawal, H.K. Poswal, D. Bhattacharyya, S.N. Jha, and N.K. Sahoo, Augmentation of the step-by-step energy-scanning EXAFS beamline BL-09 to continuous-scan EXAFS mode at INDUS-2 SRS, J. Synchrotron Radiat. 23(6) (2016), pp. 1518–1525.10.1107/S160057751601362X
  • S.D. Kelly, XAFS study of the pressure induced Bl to B2 phase transition, PhD thesis, University of Washington, 1999.
  • B. Ravel and M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Radiat. 12(4) (2005), pp. 537–541.10.1107/S0909049505012719
  • G. Kresse and J. Furthmüller, Efficient iterative scheme for ab initio total-energy calculation using a plane-wave basis set, Phys. Rev. B 54 (1996), p. 11169–11186.10.1103/PhysRevB.54.11169
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient oximation made simple, Phys. Rev. Lett. 77 (1996), p. 3865–3868.10.1103/PhysRevLett.77.3865
  • S. Gražulis, D. Chateigner, R.T. Downs, A.F.T. Yokochi, M. Quirós, L. Lutterotti, E. Manakova, J. Butkus, P. Moeck, and A. Le Bail, Crystallography open database – An open-access collection of crystal structures, J. Appl. Crystallogr. 42 (2009), pp. 726–729.10.1107/S0021889809016690
  • P.E. Blöchl, O. Jepsen, and O.K. Andersen, Improved tetrahedron method for Brillouin-zone integration, Phys. Rev. B 49 (1994), p. 16223.10.1103/PhysRevB.49.16223
  • F. Birch, Finite elastic strain of cubic crystal, Phys. Rev. 71 (1947), pp. 809–824.10.1103/PhysRev.71.809
  • J.W. Cahn, On spinodal decomposition in cubic crystals, Acta Met. 10 (1962), pp. 179–183.10.1016/0001-6160(62)90114-1
  • Available at http://www.ccp14.ac.uk/tutorial/xfit-95/getxfit.htm; verified on 04/12/2016 for checking availability.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.