927
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructure and texture development of 7075 alloy during homogenisation

&
Pages 1470-1490 | Received 03 Jun 2017, Accepted 05 Feb 2018, Published online: 16 Feb 2018

References

  • K. Chen, H. Liu, Z. Zhang, S. Li, and R.I. Todd, The improvement of constituent dissolution and mechanical properties of 7055 aluminum alloy by stepped heat treatments, J. Mater. Process. Technol. 142 (2003), pp. 190–196.10.1016/S0924-0136(03)00597-1
  • C. Mondal and A.K. Mukhopadhyay, On the nature of T(Al2Mg3Zn3) and S(Al2CuMg) phases present in as-cast and annealed 7055 aluminum alloy, Mater. Sci. Eng. A. 391 (2005), pp. 367–376.10.1016/j.msea.2004.09.013
  • A.D. Isadare, B. Aremo, M.O. Adeoye, O.J. Olawale, and M.D. Shittu, Effect of heat treatment on some mechanical properties of 7075 aluminium alloy, Mater. Res. 16 (2013), pp. 190–194.10.1590/S1516-14392012005000167
  • M.R. Rokni, A. Zareihanzaki, A.A. Roostaei, and H.R. Abedi, An investigation into the hot deformation characteristics of 7075 aluminum alloy, Mater. Des. 32 (2011), pp. 2339–2344.10.1016/j.matdes.2010.12.047
  • F. Wang, B. Xiong, Y. Zhang, Z. Zhang, Z. Wang, B. Zhu, and H. Liu, Microstructure and mechanical properties of spray-deposited Al–Zn–Mg–Cu alloy, Mater. Des. 28 (2007), pp. 1154–1158.10.1016/j.matdes.2006.01.021
  • A.K. Mukhopadhyay and V.V. Rao, Characterization of S (Al2CuMg) phase particles present in as-cast and annealed Al–Cu–Mg(–Li)–Ag alloys, Mater. Sci. Eng. A. 268 (1999), pp. 8–14.10.1016/S0921-5093(99)00123-9
  • A.K. Mukhopadhyay, Compositional characterization of Cu-rich phase particles present in as-cast Al–Cu–Mg(–Li) alloys containing Ag, Metall. Trans. A. 30 (1999), pp. 1693–1704.10.1007/s11661-999-0169-7
  • X.Z. Li, V. Hansen, J. Gjonnes, and L.R. Wallenberg, HREM study and structure modeling of the η′ phase, the hardening precipitates in commercial Al–Zn–Mg alloys, Acta Mater. 47 (1999), pp. 2651–2659.10.1016/S1359-6454(99)00138-X
  • L.K. Berg, J. Gjonnes, V. Hansen, X.Z. Li, M. Knutsonwedel, and G. Waterloo, GP-zones in Al–Zn–Mg alloys and their role in artificial aging, Acta Mater. 49 (2001), pp. 3443–34651.10.1016/S1359-6454(01)00251-8
  • M. Tajally and E. Emadoddin, Mechanical and anisotropic behaviors of 7075 aluminum alloy sheets, Mater. Des. 32 (2011), pp. 1594–1599.10.1016/j.matdes.2010.09.001
  • F.X. Gang, J.D. Ming, M. Qingchang, Z.B. You, and W. Tao, Evolution of eutectic structures in Al–Zn–Mg–Cu alloys during heat treatment, Trans. Nonferrous Met. Soc. China. 16 (2006), pp. 577–581.
  • L.I. Wenbin, P.A. Qinglin, X. Yanping, H.E. Yunbin, and L.U. Xiaoyan, Microstructural evolution of ultra-high strength Al–Zn–Cu–Mg–Zr alloy containing Sc during homogenization, Trans. Nonferrous Met. Soc. China. 21 (2011), pp. 2127–2133.
  • L.G. Chen, Y. Ling, X.H. Kang, L.J. Xia, and D.Z. Li, Numerical simulation of stress and deformation for a duplex stainless steel impeller during casting and heat treatment process, J. Mater. Sci. Technol. 24 (2008), pp. 364–368.
  • X. Fan, D. Jiang, Q. Meng, and L. Zhong, The microstructural evolution of an Al–Zn–Mg–Cu alloy during homogenization, Mater. Lett. 60 (2006), pp. 1475–1479.10.1016/j.matlet.2005.11.049
  • A. Abolhasani, A. Zareihanzaki, H.R. Abedi, and M.R. Rokni, The room temperature mechanical properties of hot rolled 7075 aluminum alloy, Mater. Des. 34 (2012), pp. 631–636.10.1016/j.matdes.2011.05.019
  • J.D. Robson, Microstructural evolution in aluminium alloy 7050 during processing, Mater. Sci. Eng. A. 382 (2004), pp. 112–121.10.1016/j.msea.2004.05.006
  • Y. Deng, Z. Yin, and F. Cong, Intermetallic phase evolution of 7050 aluminum alloy during homogenization, Intermetallics. 26 (2012), pp. 114–121.10.1016/j.intermet.2012.03.006
  • N. Nayan, S.Y.S. Narayanamurty, M.C. Mittal, and P.P. Sinha, Optimization of homogenizing mode for aluminum alloy AA 7075 using calorimetric and microstructural studies, Met. Sci. Heat Treat. 51 (2009), pp. 7–8.
  • D.D. Manish, Quantitative characterization of damage evolution in an Al–Si–Mg base cast alloy, Atlanta, Georgia Institute of Technology, 2000, p. 7.
  • F. Xigang, J. Daming, M. Qingchang, L.I. Niankui, and S. Zhaoxia, Evolution of intermetallic phases of Al–Zn–Mg–Cu alloy during heat treatment, Trans. Nonferrous Met. Soc. China. 16 (2006), pp. 1247–1250.
  • H. Toda, T. Kobayashi, and A. Takahashi, Mechanical analysis of toughness degradation due to premature fracture of course inclusions in wrought aluminium alloys, Mater. Sci. Eng. A. 280 (2000), p. 69.10.1016/S0921-5093(99)00658-9
  • Y. Ii, P. Li, G. Zhao, X. Liu, and J. Cui, The constituents in Al–10Zn–2.5Mg–2.5Cu aluminum alloy, Mater. Sci. Eng. A. 397 (2005), pp. 204–208.10.1016/j.msea.2005.02.013
  • N.U. Deshpande, A.M. Gokhale, D.K. Denzer, and J. Liu, Relationship between fracture toughness, fracture path, and microstructure of 7050 aluminum alloy: Part I. Quantitative characterization, Metall. Mater. Trans. A. 29 (1998), pp. 1191–1201.10.1007/s11661-998-0246-3
  • G.T. Hahn and A.R. Rosenfield, Metallurgical factors affecting fracture toughness of aluminum alloys, J. Metall. Trans. A. 6 (1975), p. 653.10.1007/BF02672285
  • M. Nakai and T. Etoh, Effect of the morphology of constituents and dispersoids on fracture toughness and fatigue crack propagation rate in 2024 aluminum alloys, J. Jpn. Inst. Light Met. 45 (1995), p. 677.10.2464/jilm.45.677
  • J.S. Robinson, Influence of retrogression and reaging on fracture toughness of 7010 aluminium alloy, J. Mater. Sci. Technol. 19 (2003), pp. 1697–1704.10.1179/026708303225008383
  • W.D. Callister and D.G. Rethwisch, Materials Science And Engineering, Wiley, 2010.
  • S.M. Sadrossadat, and S. Johansson, The effects of casting parameters on residual stresses and microstructure variations of an Al–Si cast alloy, International Centre for Diffraction Data. (2009), pp. 553–560.
  • S. Suwas and R.K. Ray, Crystallographic Texture of Materials, Springer, 2014.10.1007/978-1-4471-6314-5
  • C. Gras, M. Meredith, and J.D. Hunt, Microstructure and texture evolution after twin roll casting and subsequent cold rolling of Al–Mg–Mn aluminium alloys, J. Mater. Process. Technol. 169 (2005), pp. 156–163.10.1016/j.jmatprotec.2005.03.034
  • F.J. Humphreys, and M. Katherly, Recrystallization and Related Annealing Phenomena, Oxford, 1995.
  • O. Daaland and E. Nes, Recrystallization texture developments in commercial Al–Mn–Mg alloys, Acta Mater. 44 (1996), pp. 1443–1435.
  • E. Nes and J.K. Solberg, Growth of cube grains during recrystallisation, Mater. Sci. Technol. 2 (1986), pp. 19–21.10.1179/mst.1986.2.1.19
  • Y. Deng, L. Wan, L. Wu, Y. Zhang, and X. Zhang, Microstructural evolution of Al–Zn–Mg–Cu alloy during homogenization, J Mater Sci. 46 (2011), pp. 875–881.10.1007/s10853-010-4828-2
  • F. Xigang, J. Daming, M. Qingchang, L.I. Niankui, and S. Zhaoxia, Evolution of intermetallic phases of Al–Zn–Mg–Cu alloy during heat treatment, Trans. Nonferrous Met. Soc. China. 16 (2006), pp. s1247–s1250.
  • L.F. Mondolfo, Aluminium Alloys Structure and Properties, London-Boston, 1976.
  • F. Zhang, J. Shen, X. Yan, J. Sun, X. Sun, and Y. Yang, Homogenization heat treatment of 2099 Al–Li alloy, Rare Met. 33 (2014), pp. 28–36.10.1007/s12598-013-0099-9
  • M.H. Shaeri, M. Shaeri, M.T. Salehi, S.H. Seyyedein, and F. Djavanroodi, Microstructure and texture evolution of Al-7075 alloy processed by equal channel angular pressing, Trans. Nonferrous Met. Soc. China. 25 (2015), pp. 1367–1375.10.1016/S1003-6326(15)63735-9
  • J. Hirsch, Texture and anisotropy in industrial applications of Al alloys, Arch. Metall. Mater. 50 (2005), p. 14.
  • X.F. Wang, M.X. Guo, L.Y. Cao, F. Wang, J. Zhang, and L.Z. Zhuang, Effect of rolling geometry on the mechanical properties, microstructure and recrystallization texture of Al–Mg–Si alloys, Int. J. Min. Metall. Mater. 22 (2015), pp. 738–747.10.1007/s12613-015-1129-4
  • R. Singh, R.K. Khatirkar, R.N. Chouhan, and S.G. Sapate, Development of cube recrystallization texture in strip Cast AA3004 aluminium alloy, Trans. Indian. Inst. Met. 69 (2016), pp. 1833–1841.10.1007/s12666-016-0842-7
  • N. Rajmohan, J.A. Szpunar, and Y. Hayakawa, Goss Texture Development in Fe–Si Steels, Textures Microstruct. 32 (1999), pp. 153–174.10.1155/TSM.32.153
  • Y. Zuo, J. Cui, J. Dong, and F. Yu, Effect of low frequency electromagnetic field on the constituents of a new super high strength aluminum alloy, J. Alloys Compd. 402 (2005), pp. 149–155.10.1016/j.jallcom.2005.04.135
  • A.D. Isadare, B. Aremo, M.O. Adeoye, O.J. Olawale, and M.D. Shittu, Effect of heat treatment on some mechanical properties of 7075 aluminium alloy, Mater. Res. 16 (2013), pp. 190–194.10.1590/S1516-14392012005000167
  • H.Z. Ye and X.Y. Liu, Review of recent studies in magnesium matrix composites, J. Mater. Sci. 39 (2004), pp. 6153–6171.10.1023/B:JMSC.0000043583.47148.31
  • X.F. Wang, M.X. Guo, L.Y. Cao, J. Luo, J. Zhang, and L.Z. Zhuang, Influence of thermomechanical processing on microstructure, texture evolution and mechanical properties of Al−Mg−Si−Cu alloy sheets, Trans. Nonferrous Met. Soc. China. 25 (2015), pp. 1752–1762.10.1016/S1003-6326(15)63780-3
  • Z.D. Wang, Y.H. Guo, D.Q. Sun, X.H. Liu, and G.D. Wang, Texture comparison of an ordinary IF steel and a high-strength IF steel under ferritic rolling and high-temperature coiling, Mater. Charact. 57 (2006), pp. 402–407.10.1016/j.matchar.2006.03.011
  • L. Zhanga, Y. Wanga, X. Yanga, K. Lia, S. Nia, Y. Dua, and M. Songa, Texture, microstructure and mechanical properties of 6111 aluminum alloy subject to rolling deformation, Mat. Res. 20 (2017), pp. 1360–1368.10.1590/1980-5373-mr-2017-0549
  • R. Narayanasamy, R. Ravindran, K. Manonmani, and J. Satheesh, A crystallographic texture perspective formability investigation of aluminium 5052 alloy sheets at various annealing temperatures, Mater. Des. 30 (2009), pp. 1804–1817.10.1016/j.matdes.2008.09.011
  • X. Wen, Y. Liu, S. Ningileri, and T. Zhai, Anisotropy and forming limit diagram comparison of DC and CC 5xxx O temper aluminum alloy sheets, ICAA13 Pittsburgh Springer Cham. (2012), pp. 711–716.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.