166
Views
2
CrossRef citations to date
0
Altmetric
Part B:Condensed Matter Physics

Exact results relating spin–orbit interactions in two-dimensional strongly correlated systems

&
Pages 1708-1730 | Received 08 Dec 2017, Accepted 26 Jan 2018, Published online: 28 Feb 2018

References

  • Yu.M Koroteev , G. Bihlmayer , J.E. Gayone , E.V. Chulkov , S. Blügel , P.M. Echenique , and Ph Hofmann , Strong spin-orbit splitting on bi surfaces , Phys. Rev. Lett. 93 (2004), pp. 046403-1–046403-4. doi:10.1103/PhysRevLett.93.046403.
  • C.R. Ast , J. Henk , A. Ernst , L. Moreschini , M.C. Falub , D. Pacilé , P. Bruno , K. Kern , and M. Grioni , Giant spin splitting through surface alloying , Phys. Rev. Lett. 98 (2007), pp. 186807-1–186807-4. doi:10.1103/PhysRevLett.98.186807.
  • M.B. Jungfleisch , W. Zhang , J. Sklenar , W. Jiang , J.E. Pearson , J.B. Ketterson , and A. Hoffmann , Interface-driven spin-torque ferromagnetic resonance by Rashba coupling at the interface between nonmagnetic materials , Phys. Rev. B 93 (2016), pp. 224419-1–224419-5. doi:10.1103/PhysRevB.93.224419.
  • K. Yaji , Y. Ohtsubo , S. Hatta , H. Okuyama , K. Miyamoto , T. Okuda , A. Kimura , H. Namatame , M. Taniguchi , and T. Aruga , Large Rashba spin splitting of a metallic surface-state band on a semiconductor surface , Nat. Commun. 1 (2010), pp. 1–5. Available at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2909720/
  • K. Sakamoto , H. Kakuta , K. Sugawara , K. Miyamoto , A. Kimura , T. Kuzumaki , N. Ueno , E. Annese , J. Fujii , A. Kodama , T. Shishidou , H. Namatame , M. Taniguchi , T. Sato , T. Takahashi , and T. Oguchi , Peculiar Rashba splitting originating from the two-dimensional symmetry of the surface , Phys. Rev. Lett. 103 (2009), pp. 156801-1–156801-4. doi:10.1103/PhysRevLett.103.156801.
  • K. Nakatsuji , R. Niikura , Y. Shibata , M. Yamada , T. Iimori , F. Komori , Y. Oda , and A. Ishii , Anisotropic splitting and spin polarization of metallic bands due to spin-orbit interaction at the Ge(111)(3×3)R30°-Au surface , Phys. Rev. B 84 (2011), pp. 035436-1–035436-4. doi:10.1103/PhysRevB.84.035436.
  • P. Höpfner , J. Schäfer , A. Fleszar , J.H. Dil , B. Slomski , F. Meier , C. Loho , C. Blumenstein , L. Patthey , W. Hanke , and R. Claessen , Three-dimensional spin rotations at the fermi surface of a strongly spin-orbit coupled surface system , Phys. Rev. Lett. 108 (2012), pp. 186801-1–186801-5. doi:10.1103/PhysRevLett.108.186801.
  • Q.F. Sun , J. Wang , and H. Guo , Quantum transport theory for nanostructures with Rashba spin-orbital interaction , Phys. Rev. B 71 (2005), pp. 165310-1–165310-11. doi:10.1103/PhysRevB.71.165310.
  • S. Abdelouahed , A. Ernst , J. Henk , I.V. Maznichenko , and I. Mertig , Spin-split electronic states in graphene: Effects due to lattice deformation, Rashba effect, and adatoms by first principles , Phys. Rev. B 82 (2010), pp. 125424-1–126424-8. doi:10.1103/PhysRevB.82.125424.
  • M.I. Alomar and D. Sanchez , Thermoelectric effects in graphene with local spin-orbit interaction , Phys. Rev. B 89 (2014), pp. 115422-1–115422-8. doi:10.1103/PhysRevB.89.115422.
  • F. Mireles and G. Kirczenow , Ballistic spin-polarized transport and Rashba spin precession in semiconductor nanowires , Phys. Rev. B 64 (2001), pp. 024426-1–024426-13. doi:10.1103/PhysRevB.64.024426.
  • C.L. Kane and E.J. Mele , Z2 Topological order and the quantum spin hall effect , Phys. Rev. Lett. 95 (2005), pp. 146802-1–146802-4. doi:10.1103/PhysRevLett.95.146802.
  • A. Ohtomo and H.Y. Hwang , A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface , Nature 427 (2004), pp. 423–426. doi:10.1038/nature02308.
  • N. Reyren , S. Thiel , A.D. Caviglia , L. Kourkoutis , G. Hammerl , C. Richter , C.W. Schneider , T. Kopp , A.-S. Rüetschi , D. Jaccard , M. Gabay , D.A. Muller , J.-M. Triscone , and J. Mannhart , Superconducting interfaces between insulating oxides , Science 317 (2007), pp. 1196–1199. Available at http://science.sciencemag.org/content/317/5842/1196.full.pdf.
  • A.D. Caviglia , M. Gabay , S. Gariglio , N. Reyren , C. Cancellieri , and J.-M. Triscone , Tunable Rashba spin-orbit interaction at oxide interfaces , Phys. Rev. Lett. 104 (2010), pp. 126803-1–126803-4. doi:10.1103/PhysRevLett.104.126803.
  • J. Lee , W.C. Tian , W.L. Wang , and D.X. Yao , Two-dimensional Pnictogen Honeycomb lattice: Structure, on-site spin-orbit coupling and spin polarization , Sci. Rep. 5 (2015), pp. 11512–11528. Available at https://www.nature.com/articles/srep11512.pdf.
  • F. Hellman , A. Hoffmann , Y. Tserkovnyak , G.S.D. Beach , E.E. Fullerton , C. Leighton , A.H. MacDonald , D.C. Ralph , D. Arena , H.A. Dürr , P. Fischer , J. Grollier , J.P. Heremans , T. Jungwirth , A.V. Kimel , B. Koopmans , I.N. Krivorotov , S.J. May , A.K. Petford-Long , J.M. Rondinelli , N. Samarth , I.K. Schuller , A.N. Slavin , M.D. Stiles , O. Tchernyshyov , A. Thiaville , and B.L. Zink , Interface-induced phenomena in magnetism , Rev. Mod. Phys. 89 (2017), pp. 025006-1–025006-79. doi:10.1103/RevModPhys.89.025006.
  • A. Brinkman , M. Huijben , M. van Zalk , J. Huijben , U. Zeitler , J.C. Maan , W.G. van der Wiel , G. Rijnders , D.H.A. Blank , and H. Hilgenkamp , Magnetic effects at the interface between non-magnetic oxides , Nat. Mater. 6 (2007), pp. 493–496. doi:10.1038/nmat1931.
  • S. Cao , M. Street , J. Wang , J. Wang , X. Zhang , C. Binek , and P. Dowben , Magnetization at the interface of Cr2O3 and paramagnets with large stoner susceptibility , J. Phys: Cond. Mat. 29 (2017), pp. 10LT01-1–10LT01-5. doi:10.1088/1361-648X/aa58ba/meta.
  • K.V. Raman and J.S. Moodera , Materials chemistry: A magnetic facelift for non-magnetic metals , Nature 524 (2015), pp. 42–43. Available at https://www.nature.com/articles/524042a.pdf
  • T. Makarova , Nanomagnetism in otherwise nonmagnetic materials , in Handbook of Nanophysics: Principles and Methods , Klaus D. Sattler , ed., Vol. 1, CRC Press, Boca Raton, 2010. Available at arXiv, cond-mat/0207368.
  • E. Kovacs , R. Trencsenyi , and Z. Gulacsi , Magnetic nano-grains from a non-magnetic material: a possible explanation , IOP Conf. Ser. 47 (2013), pp. 012048-1–012048-6. Available at http://iopscience.iop.org/article/10.1088/1757-899X/47/1/012048/pdf
  • M.J. Pechan , E.E. Fullerton , and I.K. Shuller , Sources of interface magnetization and interface anisotropy in Fe/Cu multilayers as revealed by thermal behavior , J. Magn. Magn. Matter. 183 (1998), pp. 19–24. Available at http://www.sciencedirect.com/science/article/pii/S0304885397010640KW
  • J. Huang , L.N. Pfeiffer , and K.W. West , Spin-orbit coupling and transport in strongly correlated two-dimensional systems , Phys. Rev. B 95 (2017), pp. 195139-1–195139-5. doi:10.1103/PhysRevB.95.195139.
  • S. Gangopadhyay and W.E. Pickett , Interplay between spin-orbit coupling and strong correlation effects: Comparison of three osmate double perovskites: Ba2AOsO6 (A = Na, Ca, Y) , Phys. Rev. B 93 (2016), pp. 155126-1–155126-10. Available at https://journals.aps.org/prb/pdf/10.1103/PhysRevB.93.155126.
  • R. Schaffer , E.K.H. Lee , B.J. Yang , and Y.B. Kim , Recent progress on correlated electron systems with strong spin-orbit coupling , Rep. Progr. Phys. 79 (2016), pp. 094504-1–094504-21. Available at http://iopscience.iop.org/article/10.1088/0034-4885/79/9/094504/pdf.
  • L. Hao , D. Meyers , M.P.M. Dean , and J. Liu , Novel spin-orbit coupling driven emergent states in iridate-based heterostructures , preprint (2017). Available at arXiv, cond-mat/1711.07609.
  • J.G. Rau , E.K.H. Lee , and H.Y. Kee , Spin-orbit physics giving rise to novel phases in correlated systems: Iridates and related materials , Ann. Rev. Conden. Matter Phys. 7 (2015), pp. 195–221. doi:10.1146/annurev-conmatphys-031115-011319.
  • A. Farrell and T.P. Barnea , Strong coupling expansion of the extended Hubbard model with spin-orbit coupling , Phys. Rev. B 89 (2014), pp. 035112-1–035112-16. doi:10.1103/PhysRevB.89.035112.
  • K. Hanzawa , K. Yosida , and K. Yamada , Susceptibility of the periodic Anderson model with spin-orbit coupling , Progr. Theor. Phys. 77 (1987), pp. 1116–1124. Available at https://academic.oup.com/ptp/article/77/5/1116/1854685.
  • A.A. Zvyagin , Spin-orbit interaction in the supersymmetric antiferromagnetic tJ chain with a magnetic impurity , Low Temp. Phys. 40 (2014), pp. 65–72. Available at http://dspace.nbuv.gov.ua/bitstream/handle/123456789/119403/07-Zvyagin.pdf?sequence=1.
  • H. Isobe and N. Nagaosa , Enhancement of spin-orbit interaction by competition between Hund’s coupling and electron hopping , J. Phys: Conf. Ser. 592 (2015), pp. 012058-1–012058-6. Available at http://iopscience.iop.org/article/10.1088/1742-6596/592/1/012058/pdf.
  • A. Secchi , A.I. Lichtenstein , and M.I. Katsnelson , Magnetic interactions in strongly correlated systems: Spin and orbital contributions , Ann. Phys. 360 (2015), pp. 61–97. doi:10.1016/j.aop.2015.05.002.
  • S. Chakraborty and A. Vijay , Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions , J. Chem. Phys. 144 (2016), pp. 144107-1–144107-14. doi:10.1063/1.4945705.
  • W.M.H. Natori , E.C. Andrade , E. Miranda , and R.G. Pereira , Chiral spin-orbital liquids with nodal lines , Phys. Rev. Lett. 117 (2016), pp. 017204-1–017204-5. doi:10.1103/PhysRevLett.117.017204.
  • L. Janssen , E.C. Andrade , and M. Vojta , Honeycomb-lattice Heisenberg-Kitaev model in a magnetic field: Spin canting, metamagnetism, and vortex crystals , Phys. Rev. Lett. 117 (2016), pp. 277202-1–277202-5. doi:10.1103/PhysRevLett.117.277202.
  • Z. Gulácsi and D. Vollhardt , Exact insulating and conducting ground states of a periodic Anderson model in three dimensions , Phys. Rev. Lett. 91 (2003), pp. 186401-1–186401-5. doi:10.1103/PhysRevLett.91.186401.
  • Z. Gulácsi , A. Kampf , and D. Vollhardt , Exact many-electron ground states on the diamond hubbard chain , Phys. Rev. Lett. 99 (2007), pp. 026404-1–026404-4. doi:10.1103/PhysRevLett.99.026404.
  • Z. Gulácsi , A. Kampf , and D. Vollhardt , Route to ferromagnetism in organic polymers , Phys. Rev. Lett. 105 (2010), pp. 266403-1–266403-4. doi:10.1103/PhysRevLett.105.266403.
  • Z. Gulácsi , Exact ground states of correlated electrons on pentagon chains , Int. J. Mod. Phys. B 27 (2013), pp. 1330009-1–1330009-64. doi:10.1142/S0217979213300090.
  • Z. Gulácsi , Exact multi-electronic electron-concentration dependent ground-states for disordered two-dimensional two-band systems in presence of disordered hoppings and finite on-site random interactions , Phys. Rev. B 69 (2004), pp. 0542041–05420410doi:10.1103/PhysRevB.69.054204.
  • P. Gurin and Z. Gulácsi , Exact solutions for the periodic Anderson model in two dimensions: A non-Fermi-liquid state in the normal phase , Phys. Rev. B 64 (2001), pp. 045118-1–045118-20. doi:10.1103/PhysRevB.65.045118.
  • Z. Gulácsi and D. Vollhardt , Exact ground states of the periodic Anderson model in D=3 dimensions , Phys. Rev. B 72 (2005), pp. 075130-1–075130-20. doi:10.1103/PhysRevB.72.075130.
  • Z. Gulácsi and M. Gulácsi , Exact stripe, checkerboard, and droplet ground states in two dimensions , Phys. Rev. B 73 (2006), pp. 014524-1–014524-6. doi:10.1103/PhysRevB.73.014524.
  • Z. Gulácsi , Delocalization effect of the Hubbard repulsion in exact terms and two dimensions , Phys. Rev. B 77 (2008), pp. 245113-1–245113-10. doi:10.1103/PhysRevB.77.245113.
  • R. Trencsényi , E. Kovács , and Z. Gulácsi , Correlation and confinement induced itinerant ferromagnetism in chain structures , Phil. Mag. 89 (2009), pp. 1953–1974. doi:10.1080/14786430902810498.
  • R. Trencsényi and Z. Gulácsi , The emergence domain of an exact ground state in a non-integrable system: The case of the polyphenylene type of chains , Phil. Mag. 92 (2012), pp. 4657–4675. doi:10.1080/14786435.2012.716527.
  • G. Kovács and Z. Gulácsi , Pentagon chain in external fields , Phil. Mag. 95 (2015), pp. 3674–3695. doi:10.1080/14786435.2015.1094191.
  • Z. Yu , Short-range correlations in dilute atomic Fermi gases with spin-orbit coupling , Phys. Rev. A 85 (2012), pp. 042711-1–042711-7. doi:10.1103/PhysRevA.85.042711.
  • P. Boross , B. Dora , A. Kiss , and F. Simon , A unified theory of spin-relaxation due to spin-orbit coupling in metals and semiconductors , Sci. Rep. 3 (2013), pp. 3233–3238. Available at https://www.nature.com/articles/srep03233.pdf
  • Z. Li , L. Covaci , and F. Marsiglio , Impact of Dresselhaus vs. Rashba spin-orbit coupling on the Holstein polaron , Phys. Rev. B 85 (2012), pp. 205112-1–205112-5. doi:10.1103/PhysRevB.85.205112.
  • M. Kollar , D. Strack , and D. Vollhardt , Ferromagnetism in correlated electron systems: Generalization of Nagaoka’s theorem , Phys. Rev. B 53 (1996), pp. 9225–9231. doi:10.1103/PhysRevB.53.9225.
  • O.O. Brovko , P. Ruiz-Diaz , T.R. Dasa , and V.S. Stepanyuk , Controlling magnetism on metal surfaces with non-magnetic means: electric fields and surface charging , J. Phys: Cond. Matter 26 (2014), pp. 093001-1–093001-25. Available at http://stacks.iop.org/0953-8984/26/i=9/a=093001.
  • T. Hotta , Existence of a novel metallic ferromagnetic phase in models for undoped manganites , Phys. Rev. B 67 (2003), pp. 104428-1–104428-8. doi:10.1103/PhysRevB.67.104428.
  • Z. Gulácsi , R. Strack , and D. Vollhardt , Accurate variational results for the symmetric periodic Anderson model in one, two, and three dimensions , Phys. Rev. B 47 (1993), pp. 8594–8604. doi:10.1103/PhysRevB.47.8594.
  • B. Möller and P. Wölfle , Magnetic order in the periodic Anderson model , Phys. Rev. B 48 (1993), pp. 10320–10326. doi:10.1103/PhysRevB.48.10320.
  • J. Goraus , Onsite hybridization between Ce 4f and 5d states as the indicator of the transition from Kondo insulator to metallic state in CeRhSb , Phys. Lett. A 375 (2011), pp. 3469-1–3469-4. Available at https://www.sciencedirect.com/science/article/pii/S0375960111009479.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.