881
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Free energy change of a dislocation due to a Cottrell atmosphere

&
Pages 1491-1510 | Received 12 Sep 2017, Accepted 30 Jan 2018, Published online: 07 Mar 2018

References

  • A.H. Cottrell and B.A. Bilby, Dislocation theory of yielding and strain ageing of iron, Proc. Phys. Soc. Sect. A 62 (1949), pp. 49–62.
  • W. Cai, R.B. Sills, D.M. Barnett, and W.D. Nix, Modeling a distribution of point defects as misfitting inclusions in stressed solids, J. Mech. Phys. Solids 66 (2014), pp. 154–171.
  • A.H. Cottrell and M.A. Jaswon, Distribution of solute atoms round a slow dislocation, Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 199 (1949), pp. 104–114.
  • H. Yoshinaga and S. Morozumi, The solute atmosphere round a moving dislocation and its dragging stress, Philos. Mag. 23 (1971), pp. 1367–1385.
  • S. Takeuchi and A.S. Argon, Glide and climb resistance to the motion of an edge dislocation due to dragging a Cottrell atmosphere, Philos. Mag. A 40 (1979), pp. 65–75.
  • W. James and D.M. Barnett, A re-examination of atmospheres and impurity drag on moving dislocations, in Solute-defect Interaction, Theory and Experiment, S. Saimoto, G.R. Purdy and G.V. Kidson, eds., Pergamon Press, Toronto, 1985, pp. 136–142.
  • R. Fuentes-Samaniego, R. Gasca-Neri, and J.P. Hirth, Solute drag on moving edge dislocations, Philos. Mag. A 49 (1984), pp. 37–43.
  • F. Zhang and W.A. Curtin, Atomistically informed solute drag in Al-Mg, Modell. Simul. Mater. Sci. Eng. 16 (2008), p. 055006.
  • R.B. Sills and W. Cai, Solute drag on perfect and extended dislocations, Philos. Mag. 96 (2016), pp. 895–921.
  • F.C. Larché and J.W. Cahn, The interactions of composition and stress in crystalline solids, Acta Metall. 33 (1985), pp. 331–357.
  • W.G. Wolfer and M.I. Baskes, Interstitial solute trapping by edge dislocations, Acta Metall. 33 (1985), pp. 2005–2011.
  • P. Sofronis and H.K. Birnbaum, Mechanics of the hydrogen-dislocation-impurity interactions-I. Increasing shear modulus, J. Mech. Phys. Solids 43 (1994), pp. 49–90.
  • J.P. Hirth and J. Lothe, Theory of Dislocations, Wiley, New York, 1992.
  • D. Hull and D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, 2011.
  • S. Gavazza and D. Barnett, The self-force on a planar dislocation loop in an anisotropic linear-elastic medium, J. Mech. Phys. Solids 24 (1976), pp. 171–185.
  • A.H. Cottrell, Dislocations and Plastic Flow in Crystals, Oxford University Press, Oxford, 1953.
  • D. Delafosse, Hydrogen effects on the plasticity of face centred cubic (fcc) crystals, chap. 9, in Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: Vol. 2 Mechanisms, Modelling and Future Developments, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, Cambridge, 2012, pp. 247–285.
  • A.S. Argon, Strengthening Mechanisms in Crystal Plasticity, Oxford University Press, Oxford, 2008.
  • A.C. Damask and G.J. Dienes, Point Defects in Metals, Gordon and Breach, New York, 1963.
  • R. Fuentes-Samaniego, W.D. Nix, and G.M. Pound, Vacancy and substitutional solute distribution around an edge dislocation in equilibrium and in steady-state glide motion, Philos. Mag. 42 (1980), pp. 591–600.
  • R.B. McLellan, Solution thermodynamics, in Treatise on Materials Science and Technology Vol. 5, H. Herman, ed., Academic Press, New York, 1974, pp. 1–43.
  • X.S. Kong, X. Wu, Y.W. You, C.S. Liu, Q.F. Fang, J.L. Chen, G.N. Luo, and Z. Wang, First-principles calculations of transition metal-solute interactions with point defects in tungsten, Acta Mater. 66 (2014), pp. 172–183.
  • L. Deng, X. Zhang, J. Tang, H. Deng, S. Xiao, and W. Hu, First-principles study of binding preferences and diffusion behaviors of solutes in vanadium alloys, J. Alloys Compd. 660 (2016), pp. 55–61.
  • J. von Pezold, L. Lymperakis, and J. Neugebeauer, Hydrogen-enhanced local plasticity at dilute bulk H concentrations: The role of H-H interactions and the formation of local hydrides, Acta Mater. 59 (2011), pp. 2969–2980.
  • J.R. Lacher, A theoretical formula for the solubility of hydrogen in palladium, Proc. Roy. Soc. A: Math. Phys. Eng. Sci. 161 (1937), pp. 525–545.
  • C. Wagner, Contribution to the thermodynamic of interstitial solid solutions, Acta Metall. 19 (1971), pp. 843–849.
  • W. Cai, A. Arsenlis, C.R. Weinberger, and V.V. Bulatov, A non-singular continuum theory of dislocations, J. Mech. Phys. Solids 54 (2006), pp. 561–587.
  • G.P.M. Leyson, B. Grabowski, and J. Neugebauer, Multiscale description of dislocation induced nano-hydrides, Acta Mater. 89 (2015), pp. 50–59.
  • S. Aubry, S.P. Fitzgerald, S.L. Dudarev, and W. Cai, Equilibrium shape of dislocation shear loops in anisotropic α-Fe, Modell. Simul. Mater. Sci. Eng. 19 (2011), p. 065006.
  • The DDLab program. Available at http://micro.stanford.edu/~caiwei/forum/2005-12-05-ddlab/.
  • V.V. Bulatov and W. Cai, Computer Simulations of Dislocations, Oxford University Press, Oxford, 2006.
  • A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V. Bulatov, Enabling strain hardening simulations with dislocation dynamics, Modell. Simul. Mater. Sci. Eng. 15 (2007), pp. 553–595.
  • R.B. Sills, Dislocation dynamics of face-centered cubic metals and alloys, Ph.D. diss., Stanford University, 2016.
  • R. Keirchheim, Reducing grain boundary, dislocation line and vacancy formation energies by solute segregation: II. Experimental evidence and consequences, Acta Mater. 55 (2002), pp. 5139–5148.
  • S.-M. Lee and J.-Y. Lee, The transport and trapping phenomena of hydrogen in nickel, Met. Trans. A 17A (1986), pp. 181–187.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.