2,276
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

3D DDD modelling of dislocation–precipitate interaction in a nickel-based single crystal superalloy under cyclic deformation

, , , , , , & show all
Pages 1550-1575 | Received 15 Jul 2017, Accepted 13 Feb 2018, Published online: 12 Mar 2018

References

  • M.V. Nathal, R.A. MacKay, and R.V. Miner, Influence of precipitate morphology on intermediate temperature creep properties of a nickel-base superalloy single crystal, Metall. Trans. 20 (1989), pp. 133–141.10.1007/BF02647500
  • J.-B. le Graverend, J. Cormier, M. Jouiad, F. Gallerneau, P. Paulmier, and F. Hamon, Effect of fine γ′ precipitation on non-isothermal creep and creep-fatigue behaviour of nickel base superalloy MC2, Mater. Sci. Eng. A 527 (2010), pp. 5295–5302.10.1016/j.msea.2010.04.097
  • M.J. Wong, P.G. Sanders, J.P. Shingledecker, and C.L. White, Design of an eta-phase precipitation-hardenable nickel-based alloy with the potential for improved creep strength above 1023 K (750 °C), Metall. Mater. Trans. A 46 (2015), pp. 2947–2955.10.1007/s11661-015-2898-0
  • C. Déprés, C.F. Robertson, and M.C. Fivel, Low-strain fatigue in AISI 316L steel surface grains: a three-dimensional discrete dislocation dynamics modelling of the early cycles I. Dislocation microstructures and mechanical behaviour, Philos. Mag. 84(22) (2004), pp. 2257–2275.10.1080/14786430410001690051
  • M.S. Huang, J. Tong, and Z.H. Li, A study of fatigue crack tip characteristics using discrete dislocation dynamics, Int. J. Plast. 54 (2014), pp. 229–246.10.1016/j.ijplas.2013.08.016
  • S.X. Huang, J. Wang, and C.Z. Zhou, Effect of plastic incompatibility on the strain hardening behavior of Al–TiN nanolayered composites, Mater. Sci. Eng. A 636 (2015), pp. 430–433.10.1016/j.msea.2015.04.013
  • M.S. Huang, L.G. Zhao, and J. Tong, Discrete dislocation dynamics modelling of mechanical deformation of nickel-based single crystal superalloys, Int. J. Plast. 28 (2012), pp. 141–158.10.1016/j.ijplas.2011.07.003
  • S.M. Hafez Haghighat and G. Eggeler, Effect of climb on dislocation mechanisms and creep rates in γ′-strengthened Ni base superalloy single crystals: a discrete dislocation dynamics study, Acta Mater. 61 (2013), pp. 3709–3723.10.1016/j.actamat.2013.03.003
  • C.S. Shin, C.F. Robertson, and M.C. Fivel, Fatigue in precipitation hardened materials: a three-dimensional discrete dislocation dynamics modelling of the early cycles, Philos. Mag. 87(24) (2007), pp. 3657–3669.10.1080/14786430701393159
  • K. Yashiro, F. Kurose, Y. Nakashima, K. Kubo, Y. Tomita, and H.M. Zbib, Discrete dis-location dynamics simulation of cutting of γ′ precipitate and interfacial dislocation net-work in Ni-based superalloys, Int. J. Plast. 22 (2006), pp. 713–723.10.1016/j.ijplas.2005.05.004
  • S.I. Rao, T.A. Parthasarathy, D.M. Dimiduk, and P.M. Hazzledine, Discrete dislocation simulations of precipitation hardening in superalloys, Philos. Mag. 84 (2004), pp. 3195–3215.10.1080/14786430412331284432
  • A. Vattré, B. Devincre, and A. Roos, Dislocation dynamics simulations of precipitation hardening in Ni-based superalloys with high γ′ volume fraction, Intermetallics 17 (2009), pp. 988–994.10.1016/j.intermet.2009.04.007
  • H.M. Zbib, M. Rhee, and J.P. Hirth, On plastic deformation and the dynamics of 3D dislocations, Int. J. Mech. Sci. 40(2–3) (1998), pp. 113–127.10.1016/S0020-7403(97)00043-X
  • J.P. Hirth and J. Lothe, Theory of Dislocations, Wiley, New York, 1982.
  • S. Nategh and S.A. Sajjadi, Dislocation network formation during creep in Ni-base superalloy GTD-111, Mater. Sci. Eng. A 339 (2003), pp. 103–108.10.1016/S0921-5093(02)00125-9
  • B.M. Grant, E.M. Francis, J.Q. da Fonseca, M.R. Daymond, and M. Preuss, Deformation behaviour of an advanced nickel-based superalloy studied by neutron diffraction and electron microscopy, Acta Mater. 60 (2012), pp. 6829–6841.10.1016/j.actamat.2012.09.005
  • M. Rhee, H.M. Zbib, J.P. Hirth, H. Huang, and T.D. de La Rubia, Models for long-/short-range interactions and cross slip in 3D dislocation simulation of BCC single crystals, Model. Simul. Mater. Sci. Eng. 6 (1998), pp. 467–492.10.1088/0965-0393/6/4/012
  • H.M. Zbib and T.D. de la Rubia, A multiscale model of plasticity, Int. J. Plast. 18 (2002), pp. 1133–1163.10.1016/S0749-6419(01)00044-4
  • C.A. Zhou, S.B. Biner, and R. LeSar, Discrete dislocation dynamics simulations of plasticity at small scales, Acta Mater. 58 (2010), pp. 1565–1577.10.1016/j.actamat.2009.11.001
  • J.R. Rice, On the structure of stress–strain relations for time-dependent plastic deformation in metals, J. Appl. Mech. 37 (1970), pp. 728–737.10.1115/1.3408603
  • B. Devincre, L.P. Kubin, C. Lemarchand, and R. Madec, Mesoscopic simulations of plastic deformation, Mater. Sci. Eng. A 309–310 (2001), pp. 211–219.10.1016/S0921-5093(00)01725-1
  • T.M. Pollock and A.S. Argon, Creep resistance of CMSX-3 nickel base superalloy single crystals, Acta Metall. Mater. 40 (1992), pp. 1–30.10.1016/0956-7151(92)90195-K
  • L.N. Wang, Y. Liu, J.J. Yu, Y. Xu, X.F. Sun, H.R. Guan, and Z.Q. Hu, Orientation and temperature dependence of yielding and deformation behavior of a nickel-base single crystal superalloy, Mater. Sci. Eng. A 505 (2009), pp. 144–150.10.1016/j.msea.2008.12.039
  • Z.Q. Wang, I.J. Beyerlein, and R. Lesar, Plastic anisotropy in fcc single crystals in high rate deformation, Int. J. Plast. 25 (2009), pp. 26–48.10.1016/j.ijplas.2008.01.006
  • A. Vattré, B. Devincre, and A. Roos, Orientation dependence of plastic deformation in nickel-based single crystal superalloys: discrete-continuous model simulations, Acta Mater. 58 (2010), pp. 1938–1951.10.1016/j.actamat.2009.11.037
  • S. Gao, M. Fivel, A. Ma, and A. Hartmaier, Influence of misfit stresses on dislocation glide in single crystal superalloys: a three-dimensional discrete dislocation dynamics study, J. Mech. Phys. Solids. 76 (2015), pp. 276–290.10.1016/j.jmps.2014.11.015
  • R. Madec, B. Devincre, and L.P. Kubin, On the use of periodic boundary conditions in dislocation dynamics simulation, in IUTAM Symposium on Mesoscopic Dynamics in Fracture Process and Strength of Materials, Vol. 115, Y. Shibutani and H. Kitagawa, eds., Kluwer, Dordrecht, 2003, pp. 35–44.
  • D. Siebörger, H. Knake, and U. Glatzel, Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases, Mater. Sci. Eng. A 298 (2001), pp. 26–33.10.1016/S0921-5093(00)01318-6
  • J.K. Tien and T. Caufield, Superalloys, Supercomposites and Superceramics, Academic Press, New York, 1989.
  • L. Kubin, B. Devincre, and T. Hoc, Towards a physical model for strain hardening in fcc crystals, Mater. Sci. Eng. A 19 (2008), pp. 483–484.
  • D. Hull and D.J. Bacon, Introduction to Dislocations, 3rd ed., Pergamon Press, Oxford, 1984.
  • S. Tian, H.H. Zhou, J.H. Zhang, H.C. Yang, Y.B. Xu, and Z.Q. Hu, Formation and role of dislocation networks during high temperature creep of a single crystal nickel-base superalloy, Mater. Sci. Eng. A 279(1–2) (2000), pp. 160–165.
  • T. Tinga, W.A.M. Brekelmans, and M.G.D. Geers, Time-incremental creep-fatigue damage rule for single crystal Ni-base superalloys, Mater. Sci. Eng. A 508 (2009), pp. 200–208.10.1016/j.msea.2008.12.047
  • E.W. Huang, R.I. Barabash, Y.D. Wang, B. Clausen, L. Li, P.K. Liaw, G.E. Ice, Y. Ren, H. Choo, L.M. Pike, and D.L. Klarstrom, Plastic behavior of a nickel-based alloy under monotonic-tension and low-cycle-fatigue loading, Int. J. Plast. 24 (2008), pp. 1440–1456.10.1016/j.ijplas.2007.10.001
  • G.S. Kim, M.C. Fivel, H.J. Lee, C. Shin, H.N. Han, H.J. Chang, and K.H. Oh, A discrete dislocation dynamics modeling for thermal fatigue of preferred oriented copper via patterns, Scripta Mater. 63 (2010), pp. 788–791.10.1016/j.scriptamat.2010.06.018
  • F. Di Gioacchino and J. Quinta da Fonseca, An experimental study of the polycrystalline plasticity of austenitic stainless steel, Int. J. Plast. 74 (2015), pp. 92–109.10.1016/j.ijplas.2015.05.012
  • L.M. Brown and W.M. Stobbs, The work-hardening of copper-silica, Philos. Mag. 23 (1971), pp. 1185–1199.10.1080/14786437108217405
  • J.D. Atkinson, L.M. Brown, and W.M. Stobbs, The work hardening of copper silica: VI. The Bauschinger effect and plastic relaxation, Philos. Mag. 30 (1974), pp. 1247–1280.10.1080/14786437408207280
  • V.G. Ramaswamy, D.C. Stouffer, and J.H. Laflen, Unified constitutive model for the inelastic uniaxial response of Rene’ 80 at temperatures between 538C and 982C, J. Eng. Mater. Technol. 112 (1990), pp. 280–286.10.1115/1.2903324
  • T. Tinga, W.A.M. Brekelmans, and M.G.D. Geers, Cube slip and non-Schmid effects in single crystal Ni-base superalloys, Model. Simul. Mater. Sci. Eng. 18 (2010), pp. 1–31.
  • S.S.K. Gunturi, D.W. MacLachlan, and D.M. Knowles, Anisotropic creep in CMSX-4 in orientations distant from 〈0 0 1〉, Mater. Sci. Eng. A 289 (2000), pp. 289–298.10.1016/S0921-5093(00)00829-7
  • V. Sass and M. Feller-Kniepmeier, Orientation dependence of dislocation structures and deformation mechanisms in creep deformed CMSX-4 single crystals, Mater. Sci. Eng. A 245 (1998), pp. 19–28.10.1016/S0921-5093(97)00709-0
  • J. Svoboda and P. Lukas, Creep deformation modelling of superalloy single crystals, Acta Mater 48 (2000), pp. 2519–2528.10.1016/S1359-6454(00)00078-1
  • D.P. Pope and S.S. Ezz, Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of gamma prime, Int. Met. Rev. 29 (1984), pp. 136–167.
  • L.Q. Cui, J.J. Yu, J.L. Liu, T. Jin, and X.F. Sun, The creep deformation mechanisms of a newly designed nickel-base superalloy, Mater. Sci. Eng. A. 710 (2018), pp. 309–317.10.1016/j.msea.2017.11.002
  • S. Gao, M. Fivel, A. Ma, and A. Hartmaier, 3D discrete dislocation dynamics study of creep behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model, J. Mech. Phys. Solids. 102 (2017), pp. 209–223.10.1016/j.jmps.2017.02.010
  • M.S. Huang, Z.H. Li, and J. Tong, The influence of dislocation climb on the mechanical behavior of polycrystals and grain size effect at elevated temperature, Int. J. Plast. 61 (2014), pp. 112–127.10.1016/j.ijplas.2014.06.002