323
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Microstructural evolution of AZ31 magnesium alloy subjected to sliding friction treatment

, , , &
Pages 1576-1593 | Received 21 Feb 2017, Accepted 18 Nov 2017, Published online: 06 Mar 2018

References

  • T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas, Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci. 60 (2014), pp. 130–207.10.1016/j.pmatsci.2013.09.002
  • F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Elsevier, New York, 2004.
  • K. Wang, N.R. Tao, G. Liu, J. Lu, and K. Lu, Plastic strain-induced grain refinement at the nanometer scale in copper, Acta Mater. 54 (2006), pp. 5281–5291.10.1016/j.actamat.2006.07.013
  • A.-S. Talal, D.M. Konstantin, A.M. Dmitri, G. Günter, and S. Satyam, Softening and dynamic recrystallization in magnesium single crystals during c-axis compression, Acta Mater. 60 (2012), pp. 537–545.
  • O. Sitdikov and R. Kaibyshev, Dynamic recrystallization in pure magnesium, Mater. Trans. 42 (2001), pp. 1928–1937.10.2320/matertrans.42.1928
  • A. Galiyev, R. Kaibyshev, and G. Gottstein, Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60, Acta Mater. 49 (2001), pp. 1199–1207.10.1016/S1359-6454(01)00020-9
  • M. Hakamada, A. Watazu, N. Saito, and H. Iwasaki, Effects of homogenization annealing on dynamic recrystallization in Mg–Al–Ca–RE (Rare Earth) alloy, Mater. Trans. 49 (2008), pp. 1032–1037.10.2320/matertrans.MC200783
  • L. Jin, D.L. Lin, D.L. Mao, X.Q. Zeng, B. Chen, and W.J. Ding, Microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion, Mater. Sci. Eng. A 423 (2006), pp. 247–252.10.1016/j.msea.2006.02.045
  • A.G. Beer and M.R. Barnett, Microstructural development during hot working of Mg–3Al–1Zn, Metall. Mater. Trans. A 38 (2007), pp. 1856–1867.10.1007/s11661-007-9207-5
  • I. Ulacia, N.V. Dudamell, F. Gálvez, S. Yi, M.T. Pérez-Prado, and I. Hurtado, Mechanical behavior and microstructural evolution of a Mg AZ31 sheet at dynamic strain rates, Acta Mater. 58 (2010), pp. 2988–2998.10.1016/j.actamat.2010.01.029
  • M.T. Pérez-Prado, D. Valle, and O.A. Ruano, Grain refinement of Mg–Al–Zn alloys via accumulative roll bonding, Scr. Mater. 51 (2004), pp. 1093–1097.10.1016/j.scriptamat.2004.07.028
  • K. Edalati, A. Yamamoto, Z. Horita, and T. Ishihara, High-pressure torsion of pure magnesium: Evolution of mechanical properties, microstructures and hydrogen storage capacity with equivalent strain, Scr. Mater. 64 (2011), pp. 880–883.10.1016/j.scriptamat.2011.01.023
  • J. Li, D.L. Lin, D.L. Mao, X.Q. Zeng, and W.J. Ding, An electron back-scattered diffraction study on the microstructure evolution of AZ31 Mg alloy during equal channel angular extrusion, J. Alloy. Compd. 426 (2006), pp. 148–154.
  • B.L. Zheng, Y. Li, W.Z. Xu, Y.Z. Zhou, S.N. Mathaudhu, Y.T. Zhu, and E.J. Lavernia, Twinning in cryomilled nanocrystalline Mg powder, Phil. Mag. Lett. 93 (2013), pp. 457–464.10.1080/09500839.2013.801567
  • M. Pozuelo, S.N. Mathaudhu, S. Kim, B. Li, W.H. Kao, and J.M. Yang, Nanotwins in nanocrystalline Mg–Al alloys: an insight from high-resolution TEM and molecular dynamics simulation, Phil. Mag. Lett. 93 (2013), pp. 640–647.10.1080/09500839.2013.833353
  • H.Q. Sun, Y.N. Shi, M.X. Zhang, and K. Lu, Plastic strain-induced grain refinement in the nanometer scale in a Mg alloy, Acta Mater. 55 (2007), pp. 975–982.10.1016/j.actamat.2006.09.018
  • S. Karthikeyan, H.J. Kim, and D.A. Rigney, Velocity and strain-rate profiles in materials subjected to unlubricated sliding, Phys. Rev. Lett. 95 (2005), p. 106001
  • D.A. Hughes, D.B. Dawson, J.S. Korellls, and L.I. Weingarten, Near surface microstructures developing under large sliding loads, J. Mater. Eng. Perform. 3 (1994), pp. 459–475.10.1007/BF02645312
  • Y.S. Zhang, P.X. Zhang, H.Z. Niu, C. Chen, G. Wang, D.H. Xiao, X.H. Chen, Z.T. Yu, S.B. Yuan, and X.F. Bai, Surface nanocrystallization of Cu and Ta by sliding friction, Mater. Sci. Eng. A 607 (2014), pp. 351–355.10.1016/j.msea.2014.03.089
  • Y.N. Wang and J.C. Huang, The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy, Acta Mater. 55 (2007), pp. 897–905.10.1016/j.actamat.2006.09.010
  • A. Ostapovets, P. Molnár, A. Jäger, P. Lejček, A. Ostapovets, A. Jäger, and P. Lejček. Analysis of near-coincidence site lattice boundary frequency in AZ31 magnesium alloy, METAL2012, Brno, 2012, pp. 1198–1202.
  • A.H. King and S. Shekhar, What does it mean to be special? The significance and application of the Brandon criterion, J. Mater. Sci. 41 (2006), pp. 7675–7682.10.1007/s10853-006-0665-8
  • J.C. Tan and M.J. Tan, Dynamic continuous recrystallization characteristics in two stage deformation of Mg–3Al–1Zn alloy sheet, Mater. Sci. Eng. A 339 (2003), pp. 124–132.10.1016/S0921-5093(02)00096-5
  • W.W. Jian, G.M. Cheng, W.Z. Xu, H. Yuan, M.H. Tsai, Q.D. Wang, C.C. Koch, Y.T. Zhu, and S.N. Mathaudhu, Ultrastrong Mg alloy via nano-spaced stacking faults, Mater. Res. Lett. 1 (2013), pp. 61–66.10.1080/21663831.2013.765927
  • W.W. Jian, G.M. Cheng, W.Z. Xu, and C.C. Koch, Physics and model of strengthening by parallel stacking faults, Appl. Phys. Lett. 103 (2013), p. 801.
  • S.D. Antolovich and R.W. Armstrong, Plastic strain localization in metals: origins and consequences, Prog. Mater. Sci. 59 (2014), pp. 1–160.10.1016/j.pmatsci.2013.06.001
  • C.I. Chang, C.J. Lee, and J.C. Huang, Relationship between grain size and Zener–Holloman parameter during friction stir processing in AZ31 Mg alloys, Scr. Mater. 51 (2004), pp. 509–514.10.1016/j.scriptamat.2004.05.043
  • A.H. Ammouri, G. Kridli, G. Ayoub, and R.F. Hamade, Relating grain size to the Zener-Hollomon parameter for twin-roll-cast AZ31B alloy refined by friction stir processing, J. Mater. Process. Tech 222 (2015), pp. 301–306.10.1016/j.jmatprotec.2015.02.037
  • R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett, Current issues in recrystallization: A review, Mat. Sci. Eng. A 238 (1997), pp. 219–274.10.1016/S0921-5093(97)00424-3
  • H.D. Fan, S. Aubry, A. Arsenlis, and J.A. El-Awady, Orientation influence on grain size effects in ultrafine-grained magnesium, Scr. Mater. 97 (2015), pp. 25–28.10.1016/j.scriptamat.2014.10.031
  • S. Graff, W. Brocks, and D. Steglich, Yielding of magnesium: From single crystal to polycrystalline aggregates, Int. J. Plasticity 23 (2007), pp. 1957–1978.10.1016/j.ijplas.2007.07.009
  • J. Zhang and S.P. Joshi, Phenomenological crystal plasticity modeling and detailed micromechanical investigations of pure magnesium, J. Mech. Phys. Solids. 60 (2012), pp. 945–972.10.1016/j.jmps.2012.01.005
  • R.E. Reed-Hill and W.D. Robertson, Additional modes of deformation twinning in magnesium, Acta Mater. 5 (1957), p. 717727.
  • D. Matsunaka, A. Kanoh, and Y. Shibutani, Energetic analysis of deformation twins and twinning dislocations in magnesium, Mater. Trans. 54 (2013), pp. 1524–1527.10.2320/matertrans.M2013095
  • Y.B. Wang and M.L. Sui, Atomic-scale in situ observation of lattice dislocations passing through twin boundaries, Appl. Phys. Lett. 94 (2009), p. 737.
  • M.D. Sangid, T. Ezaz, and H. Sehitoglu, Energetics of residual dislocations associated with slip-twin and slip-GBs interactions, Mater. Sci. Eng. A 542 (2012), pp. 21–30.10.1016/j.msea.2012.02.023
  • H.E. Kadiri, J. Kapil, A.L. Oppedal, L.G.H. Jr, S.R. Agnew, M. Cherkaoui, and S.C. Vogel, The effect of twin-twin interactions on the nucleation and propagation of 10–12 math container loading mathjax twinning in magnesium, Acta Mater. 61 (2013), pp. 3549–3563.10.1016/j.actamat.2013.02.030
  • J. Kacher, B.P. Eftink, B. Cui, and I.M. Robertson, Dislocation interactions with grain boundaries, Curr. Opinion Solid State Mater. Sci. 18 (2014), pp. 227–243.10.1016/j.cossms.2014.05.004
  • J.A.D. Valle, M.T. Pérez-Prado, and O.A. Ruano, Texture evolution during large-strain hot rolling of the Mg AZ61 alloy, Mater. Sci. Eng. A 355 (2003), pp. 68–78.10.1016/S0921-5093(03)00043-1
  • T. Al-Samman, K.D. Molodov, D.A. Molodov, G. Gottstein, and S. Suwas, Softening and dynamic recrystallization in magnesium single crystals during c-axis compression, Acta Mater. 60 (2012), pp. 537–545.10.1016/j.actamat.2011.10.013
  • Z.M. Ah Feng, Microstructural evolution of cast Mg–Al–Zn during friction stir processing and subsequent aging, Acta Mater. 57 (2009), pp. 4248–4260.10.1016/j.actamat.2009.05.022
  • M.A. Meyers, O. Vöhringer, and V.A. Lubarda, The onset of twinning in metals: a constitutve description, Acta Mater. 49 (2001), pp. 4025–4039.10.1016/S1359-6454(01)00300-7
  • J.Z. Li, W. Xu, X.L. Wu, H. Ding, and K.N. Xia, Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature, Mater. Sci. Eng. A 528 (2011), pp. 5993–5998.10.1016/j.msea.2011.04.045
  • Q. Yu, L. Qi, K. Chen, R.K. Mishra, J. Li, and A.M. Minor, The nanostructured origin of deformation twinning, Nano Lett. 12 (2012), pp. 887–892.10.1021/nl203937t
  • Y.N. Yu, Metallography Principle, Metallurgical Industry Press, Beijing, 2007.
  • J.W. Christian and S. Mahajan, Deformation twinning, Prog. Mater. Sci. 39 (1995), pp. 1–157.10.1016/0079-6425(94)00007-7
  • T. Zhu and J. Li, Ultra-strength materials, Prog. Mater. Sci. 55 (2010), pp. 710–757.10.1016/j.pmatsci.2010.04.001
  • E.J. Mittemeijer, Fundamentals of Materials Science: The Microstructure-Property Relationship Using Metals as Model Systems, Springer, Berlin Heidelberg, 2011.10.1007/978-3-642-10500-5
  • S. Biswas, S.S. Dhinwal, and S. Suwas, Room-temperature equal channel angular extrusion of pure magnesium, Acta Mater. 58 (2010), pp. 3247–3261.10.1016/j.actamat.2010.01.051
  • B. Dodd and Y. Bai, Adiabatic Shear Localization, Elsevier, London, 2012.
  • M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006), pp. 427–556.10.1016/j.pmatsci.2005.08.003
  • J.A. Hines and K.S. Vecchio, Recrystallization kinetics within adiabatic shear bands, Acta Mater. 45 (1997), pp. 635–649.10.1016/S1359-6454(96)00193-0
  • N.V. Dudamell, I. Ulacia, F. Gálvez, S. Yi, J. Bohlen, D. Letzig, I. Hurtado, and M.T. Pérez-Prado, Twinning and grain subdivision during dynamic deformation of a Mg AZ31 sheet alloy at room temperature, Acta Mater. 59 (2011), pp. 6949–6962.10.1016/j.actamat.2011.07.047
  • S. Das, A.T. Morales, and A.T. Alpas, Microstructural evolution during high temperature sliding wear of Mg–3% Al–1% Zn (AZ31) alloy, Wear 268 (2010), pp. 94–103.10.1016/j.wear.2009.07.001
  • C. Liang, C. Li, X.X. Lv, and J. An, Correlation between friction-induced microstructural evolution, strain hardening in subsurface and tribological properties of AZ31 magnesium alloy, Wear 312 (2014), pp. 29–39.10.1016/j.wear.2014.02.001
  • C. Liang, C. Li, J. An, M. Yu, Y.C. Hu, W.H. Lin, F. Liu, and Y.H. Ding, Effect of Microstructural Evolution and Hardening in Subsurface on Wear Behavior of Mg–3Al–1Zn Alloy, J. Mater. Eng. Perform. 22 (2013), pp. 3783–3791.10.1007/s11665-013-0684-y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.