231
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Face-centred cubic to body-centred cubic phase transformation under [1 0 0] tensile loading

, , &
Pages 1696-1707 | Received 10 Dec 2017, Accepted 05 Mar 2018, Published online: 30 Mar 2018

References

  • E.C. Bain and N.Y. Dunkirk , The nature of martensite , Trans. AIME 70 (1924), p. 1.
  • F. Milstein , Theoretical strength of a perfect crystal , Phys. Rev. B 3 (1971), pp. 1130–1141.10.1103/PhysRevB.3.1130
  • F. Milstein and B. Farber , Theoretical fcc→bcc transition under [1 0 0] tensile loading , Phys. Rev. Lett. 44 (1980), pp. 277–280.10.1103/PhysRevLett.44.277
  • F. Milstein , J. Marschall , and H.E. Fang , Theoretical bcc↔fcc transitions in metals via bifurcations under uniaxial load , Phys. Rev. Lett. 74 (1995), pp. 2977–2980.10.1103/PhysRevLett.74.2977
  • D.T. Ho , S.D. Park , S.Y. Kwon , K. Park , and S.Y. Kim , Negative Poisson’s ratios in metal nanoplates , Nat. Commun. 5 (2014), p. 3255.
  • D.T. Ho , Y.T. Im , S.Y. Kwon , Y.Y. Earmme , and S.Y. Kim , Mechanical failure mode of metal nanowires: global deformation versus local deformation , Sci. Rep. 5 (2015), p. 910.10.1038/srep11050
  • D.T. Ho , S.Y. Kwon , H.S. Park , and S.Y. Kim , Metal nanoplates: Smaller is weaker due to failure by elastic instability , Phy. Rev. B 96 (2017), p. 184103.10.1103/PhysRevB.96.184103
  • T. Zhu , J. Li , A. Samanta , A. Leach , and K. Gall , Temperature and strain-rate dependence of surface dislocation nucleation , Phys. Rev. Lett. 100 (2008), p. 503.10.1103/PhysRevLett.100.025502
  • H. Ikeda , Y. Qi , T. Çagin , K. Samwer , W.L. Johnson , and W.A. Goddard , Strain rate induced amorphization in metallic nanowires , Phys. Rev. Lett. 82 (1999), pp. 2900–2903.10.1103/PhysRevLett.82.2900
  • P.S. Branício and J.P. Rino , Large deformation and amorphization of Ni nanowires under uniaxial strain: A molecular dynamics study , Phys. Rev. B 62 (2000), pp. 16950–16955.10.1103/PhysRevB.62.16950
  • Y.H. Wen , Z.Z. Zhu , and R.Z. Zhu , Molecular dynamics study of the mechanical behavior of nickel nanowire: Strain rate effects , Comp. Mater. Sci. 41 (2008), pp. 553–560.10.1016/j.commatsci.2007.05.012
  • S.J.A. Koh , H.P. Lee , C. Lu , and Q.H. Cheng , Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects , Phys. Rev. B 72 (2005), p. 544.10.1103/PhysRevB.72.085414
  • S.J.A. Koh and H.P. Lee , Shock-induced localized amorphization in metallic nanorods with strain-rate-dependent characteristics , Nano Lett. 6 (2006), pp. 2260–2267.10.1021/nl061640o
  • S.J.A. Koh and H.P. Lee , Molecular dynamics simulation of size and strain rate dependent mechanical response of FCC metallic nanowires , Nanotechnology 17 (2006), pp. 3451–3467.10.1088/0957-4484/17/14/018
  • S.K.R.S. Sankaranarayanan , V.R. Bhethanabotla , and B. Joseph , Molecular dynamics simulation of temperature and strain rate effects on the elastic properties of bimetallic Pd-Pt nanowires , Phys. Rev. B 76 (2007), p. 113.10.1103/PhysRevB.76.134117
  • S. Plimpton , Fast parallel algorithms for short-range molecular dynamics , J. Comput. Phys. 117 (1995), pp. 1–19.10.1006/jcph.1995.1039
  • S. Plimpton , Large-scale atomic/molecular massively parallel simulator , Sandia National Laboratories, Albuquerque, 2007.
  • M. Zhou , A new look at the atomic level virial stress: on continuum-molecular system equivalence , Proc. R. Soc. Lond A. 459 (2003), pp. 2347–2392.10.1098/rspa.2003.1127
  • M.A. Tschopp , D.E. Spearot , and D.L. McDowell , Atomistic simulations of homogeneous dislocation in single crystal copper , Model. Simul. Mater. Sci. Eng. 15 (2007), pp. 693–709.10.1088/0965-0393/15/7/001
  • M.A. Tschopp and D.L. McDowell , Influence of single crystal orientation on homogeneous dislocation nucleation under uniaxial loading , J. Mech. Phys. Solids 56 (2008), pp. 1806–1830.10.1016/j.jmps.2007.11.012
  • D.E. Spearot , M.A. Tschopp , and D.L. McDowell , Orientation and rate dependence of dislocation nucleation stress computed using molecular dynamics , Scr. Mater. 60 (2009), pp. 675–678.10.1016/j.scriptamat.2008.12.037
  • S.M. Foiles , M.I. Baskes , and M.S. Daw , Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Pd, Pt, and their alloys , Phys. Rev. B 33 (1986), pp. 7983–7991.10.1103/PhysRevB.33.7983
  • Y. Mishin , M.J. Mehl , D.A. Papaconstantopoulos , A.F. Voter , and J.D. Kress , Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations , Phys. Rev. B 63 (2001), p. 3076.10.1103/PhysRevB.63.224106
  • P.A.T. Olsson , Transverse resonant properties of strained gold nanowires , J. Appl. Phys. 108 (2010), p. 034318.10.1063/1.3460127
  • P.L. Williams , Y. Mishin , and J.C. Hamilton , An embedded-atom potential for the Cu–Ag system , Modelling Simul. Mater. Sci. Eng. 14 (2006), pp. 817–833.10.1088/0965-0393/14/5/002
  • A. Stukowski , Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool , Model. Simul. Mater. Sci. Eng. 18 (2010), p. 015012.10.1088/0965-0393/18/1/015012
  • J.K. Diao , K. Gall , and M.L. Dunn , Surface-stress-induced phase transformation in metal nanowires , Nature Mater. 2 (2003), pp. 656–660.10.1038/nmat977
  • H.S. Park , Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires , Nano Lett. 6 (2006), pp. 958–962.10.1021/nl060024p
  • J.J. Lao and D. Moldovan , Surface stress induced structural transformations and pseudoelastic effects in palladium nanowires , Appl. Phys. Lett. 93 (2008), p. 093108.10.1063/1.2976434
  • H.S. Park , K. Gall , and J.A. Zimmerman , Shape memory and pseudoelasticity in metal nanowires , Phys. Rev. Lett. 95 (2005), p. 255504.10.1103/PhysRevLett.95.255504
  • W.W. Liang and M. Zhou , Shape memory effect in Cu nanowires , Nano Lett. 5 (2005), pp. 2039–2043.10.1021/nl0515910
  • J.K. Diao , K. Gall , and M.L. Dunn , Surface stress driven reorientation of gold nanowires , Phys. Rev. B 70 (2004), p. 075413.10.1103/PhysRevB.70.075413
  • R. Hill and F. Milstein , Principles of stability analysis of ideal crystals , Phys. Rev. B 15 (1977), pp. 3087–3096.10.1103/PhysRevB.15.3087
  • M. Born , On the stability of crystal lattices. I , Proc. Cambridge Phil. Soc. 36 (1940), pp. 160–172.10.1017/S0305004100017138
  • J. Wang and S. Yip , Crystal instability at finite strain , Phys. Rev. Lett. 71 (1993), pp. 4182–4185.10.1103/PhysRevLett.71.4182
  • J. Wang , J. Li , and S. Yip , Mechanical instabilities of homogeneous crystals , Phys. Rev. B 52 (1995), pp. 12627–12635.10.1103/PhysRevB.52.12627

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.