285
Views
5
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Surface stress mediated image force and torque on an edge dislocation

, , , &
Pages 1731-1743 | Received 26 May 2017, Accepted 24 Feb 2018, Published online: 16 Apr 2018

References

  • D. Hull and D.J. Bacon, Introduction to Dislocations, Butterworth-Heinemann, Oxford, 2001.
  • P. Khanikar, A. Kumar, and A. Subramaniam, Determination of image forces in nanocrystals using finite element method, Adv. Mater. Res. 67 (2009), p. 33.10.4028/www.scientific.net/AMR.67
  • F. Kroupa, Dislocation loops, in Theory of Crystal Defects, B. Gruber, ed., Academic Press, New York, 1966, p. 275.
  • W.G. Wolfer, T. Okita, and D.M. Barnett, Motion and rotation of small glissile dislocation loops in stress fields, Phys. Rev. Lett. 92 (2004), p. 085507.10.1103/PhysRevLett.92.085507
  • S.D. Wang and S. Lee, Mechanical equilibrium of an edge dislocation dipole near a crack tip, Int. J. Fract. 57 (1992), p. 317.10.1007/BF00013056
  • N.M. Ghoniem, B.N. Singh, L.Z. Sun, and T.D. Dı́az de la Rubia, Interaction and accumulation of glissile defect clusters near dislocations, J. Nucl. Mater. 276 (2000), p. 166.10.1016/S0022-3115(99)00176-2
  • A. Aslanides and V. Pontikis, Atomistic calculation of the interaction between an edge dislocation and a free surface, Phil. Mag. Lett. 78 (1998), p. 377.10.1080/095008398177779
  • P. Khanikar, A. Kumar, and A. Subramaniam, Image forces on edge dislocations: A revisit of the fundamental concept with special regard to nanocrystals, Philos. Mag. 91 (2011), p. 730.10.1080/14786435.2010.529089
  • J.D. Eshelby and A.N. Stroh, Dislocations in thin plates, Philos. Mag. 42 (1951), p. 1401.10.1080/14786445108560958
  • J.D. Eshelby, Screw Dislocations in Thin Rods, J. Appl. Phys. 24 (1953), p. 176.10.1063/1.1721234
  • P. Khanikar and A. Subramaniam, Critical size for edge dislocation free free-standing nanocrystals by finite element method, J. Nano Res. 10 (2010), p. 93.10.4028/www.scientific.net/JNanoR.10
  • A. Kumar and A. Subramaniam, Stable edge dislocations in finite crystals, Philos. Mag. 92 (2012), p. 2947.10.1080/14786435.2012.682176
  • M.J. Bierman, Y.K. Albert Lau, A.V. Kvit, A.L. Schmitt, and S. Jin, Dislocation-driven nanowire growth and Eshelby twist, Science 320 (2008), p. 1060.
  • A. Kumar and A. Subramaniam, Materials analogue of zero stiffness structures, Philos. Mag. Lett. 91 (2011), p. 272.10.1080/09500839.2011.555953
  • M.E. Gurtin and A.I. Murdoch, Surface stress in solids, Int. J. Solids Struct. 14 (1978), p. 431.10.1016/0020-7683(78)90008-2
  • R. Shuttleworth, Surface tension in solids, Proc. Phys. Soc. 63 (1949), p. 444.
  • R.J. Needs and M.J. Godfrey, The Origin and Possible Implications of Surface Stress on Metals, Phys. Scr. T19B (1987), p. 391.10.1088/0031-8949/1987/T19B/012
  • P.J. Feibelman, Calculation of surface stress in a linear combination of atomic orbitals representation, Phys. Rev. B 50 (1994), p. 1908.10.1103/PhysRevB.50.1908
  • V.B. Shenoy, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Phys. Rev. B 71 (2005), pp. 094104-1.10.1103/PhysRevB.71.094104
  • J. Wan, Y.L. Fan, D.W. Gong, S.G. Shen, and X.Q. Fan, Surface relaxation and stress of fcc metals: Cu, Ag, Au, Ni, Pd, Pt, Al and Pb, Modell. Simul. Mater. Sci. Eng. 7 (1999), p. 189.10.1088/0965-0393/7/2/005
  • G. Iyer, D. De, A. Kumar, R. Pala, and Anandh Subramaniam, Two scale simulations of surface stress in solids and its effects, Appl. Surf. Sci. 371 (2016), p. 343.10.1016/j.apsusc.2016.02.201
  • Z. Huang, P. Thomson, and S. Di, Lattice contractions of a nanoparticle due to the surface tension: A model of elasticity, J. Phys. Chem. Solids 68 (2007), p. 530.10.1016/j.jpcs.2007.01.016
  • M.E. Gurtin and A.I. Murdoch, A continuum theory of elastic material surfaces, Arch. Ration Mech Anal. 57 (1975), p. 291.
  • C. Mi, S. Jun, D.A. Kouris, and S.Y. Kim, Atomistic calculations of interface elastic properties in noncoherent metallic bilayers, Phys. Rev. B 77 (2008), p. 075425.10.1103/PhysRevB.77.075425
  • L. Pahlevani and H.M. Shodja, Surface and interface effects on torsion of eccentrically two-phase fcc circular nanorods: Determination of the surface/interface elastic properties via an atomistic approach, J. Appl. Mech. 78 (2011), p. 011011.
  • M.Y. Gutkin, C. Enzevaee, and H.M. Shodja, Interface effects on elastic behavior of an edge dislocation in a core–shell nanowire embedded to an infinite matrix, Int. J. Solids Struct. 50 (2013), p. 1177.10.1016/j.ijsolstr.2012.12.008
  • M.Y. Gutkin, S.R. Rezazadeh Kalehbasti, and H.M. Shodja, Surface/interface effects on elastic behavior of an edge dislocation in the shell of a core–shell nanowire, Euro. J. Mech. A 41 (2013), p. 86.10.1016/j.euromechsol.2013.02.008
  • Y.W. Liu, Y.X. Zhao, P.H. Wen, and S. Lin, Elastic behavior of an edge dislocation inside the nanoscale coating layer, Acta Mech. 223 (2012), p. 1917.10.1007/s00707-012-0689-x
  • C. Enzevaee, M.Y. Gutkin, and H.M. Shodja, Surface/interface effects on the formation of misfit dislocation in a core–shell nanowire, Philos. Mag. 94 (2014), p. 492.10.1080/14786435.2013.856527
  • Q.H. Fang and Y.W. Liu, Size-dependent interaction between an edge dislocation and a nanoscale inhomogeneity with interface effects, Acta Mater. 54 (2006), p. 4213.10.1016/j.actamat.2006.05.012
  • H.M. Shodja, H. Ahmadzadeh-Bakhshayesh, and M.Y. Gutkin, Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects, Int. J. Solids Struct. 49 (2012), p. 759.10.1016/j.ijsolstr.2011.11.013
  • J. Hafner, Ab-initio simulations of materials using VASP: Density-functional theory and beyond, J. Comput. Chem. 29 (2008), p. 2044.10.1002/jcc.v29:13
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50 (1994), p. 17953.10.1103/PhysRevB.50.17953
  • G. Kresse and D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method, Phys. Rev. B 59 (1999), p. 1758.10.1103/PhysRevB.59.1758
  • H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13 (1976), p. 5188.10.1103/PhysRevB.13.5188
  • D. Holec, M. Friák, J. Neugebauer, and P.H. Mayrhofer, Trends in the elastic response of binary early transition metal nitrides, Phys. Rev. B 85 (2012), p. 064101.10.1103/PhysRevB.85.064101
  • Y. Le Page and P. Saxe, Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress, Phys. Rev. B 65 (2002), p. 104104.10.1103/PhysRevB.65.104104
  • W. Kim and M. Cho, Surface effect on the self-equilibrium state and size-dependent elasticity of FCC thin films, Modell. Simul. Mater. Sci. Eng. 18 (2010), p. 085006.10.1088/0965-0393/18/8/085006
  • A.E. Romanov and T. Wagner, On the universal misfit parameter on mismatched interfaces, Scripta Mater. 45 (2001), p. 325.10.1016/S1359-6462(01)01035-1
  • E.A. Brandes, Smithells Metals Reference Book, Butterworths, London, 2004.
  • L. Carroll (C.L. Dodgson), Alice’s Adventures in Wonderland, Macmillan, 1865.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.