400
Views
13
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Dual self-organised shear banding behaviours and enhanced ductility in phase separating Zr-based bulk metallic glasses

, ORCID Icon, , , , , , , , , , & show all
Pages 1744-1764 | Received 12 Nov 2017, Accepted 14 Mar 2018, Published online: 29 Mar 2018

References

  • Y.Q. Cheng and E. Ma, Atomic-level structure and structure-property relationship in metallic glasses, Prog. Mater. Sci. 56 (2011), pp. 379–473.10.1016/j.pmatsci.2010.12.002
  • M.F. Ashby and A.L. Greer, Metallic glasses as structural materials, Scr. Mater. 54 (2006), pp. 321–326.10.1016/j.scriptamat.2005.09.051
  • A.L. Greer, Metallic glasses … on the threshold, Mater. Today 12 (2009), pp. 14–22.10.1016/S1369-7021(09)70037-9
  • C.A. Schuh, T.C. Hufnagel, and U. Ramamurty, Mechanical behavior of amorphous alloys, Acta Mater. 55 (2007), pp. 4067–4109.10.1016/j.actamat.2007.01.052
  • B.A. Sun and W.H. Wang, The fracture of bulk metallic glasses, Prog. Mater. Sci. 74 (2015), pp. 211–307.10.1016/j.pmatsci.2015.05.002
  • B.A. Sun, K.K. Song, S. Pauly, P. Gargarella, J. Yi, G. Wang, C.T. Liu, J. Eckert, and Y. Yang, Transformation-mediated plasticity in CuZr based metallic glass composites: A quantitative mechanistic understanding, Int. J. Plast. 85 (2016), pp. 34–51.10.1016/j.ijplas.2016.06.004
  • F.F. Wu, W. Zheng, S.D. Wu, Z.F. Zhang, and J. Shen, Shear stability of metallic glasses, Int. J. Plast. 27 (2011), pp. 560–575.10.1016/j.ijplas.2010.08.004
  • A.L. Greer, Y.Q. Cheng, and E. Ma, Shear bands in metallic glasses, Mater. Sci. Eng. R 74 (2013), pp. 71–132.10.1016/j.mser.2013.04.001
  • J. Eckert, J. Das, S. Pauly, and C. Duhamel, Processing routes, microstructure and mechanical properties of metallic glasses and their composites, Adv. Eng. Mater. 9 (2007), pp. 443–453.10.1002/(ISSN)1527-2648
  • Y. Wu, H. Wang, X.J. Liu, X.H. Chen, X.D. Hui, Y. Zhang, and Z.P. Lu, Designing bulk metallic glass composites with enhanced formability and plasticity, J. Mater. Sci. Technol. 30 (2014), pp. 566–575.10.1016/j.jmst.2014.03.028
  • K.K. Song, S. Pauly, Y. Zhang, S. Scudino, P. Gargarella, K.B. Surreddi, U. Kühn, and J. Eckert, Significant tensile ductility induced by cold rolling in Cu47.5Zr47.5Al5 bulk metallic glass, Intermetallics 19 (2011), pp. 1394–1398.10.1016/j.intermet.2011.05.001
  • Y.S. Qin, X.L. Han, K.K. Song, Y.H. Tian, C.X. Peng, L. Wang, B.A. Sun, G. Wang, I. Kaban, and J. Eckert, Local melting to design strong and plastically deformable bulk metallic glass composites, Sci. Rep. 7 (2017), p. 42518.10.1038/srep42518
  • D.H. Kim, W.T. Kim, E.S. Park, N. Mattern, and J. Eckert, Phase separation in metallic glasses, Prog. Mater. Sci. 58 (2013), pp. 1103–1172.10.1016/j.pmatsci.2013.04.002
  • X.H. Du, J.C. Huang, K.C. Hsieh, Y.H. Lai, H.M. Chen, J.S.C. Jang, and P.K. Liaw, Two-glassy-phase bulk metallic glass with remarkable plasticity, Appl. Phys. Lett. 91 (2007), p. 131901.10.1063/1.2790380
  • J. Pan, L. Liu, and K.C. Chan, Enhanced plasticity by phase separation in CuZrAl bulk metallic glass with micro-addition of Fe, Scr. Mater. 60 (2009), pp. 822–825.10.1016/j.scriptamat.2009.01.032
  • J. Park, J. Han, N. Mattern, D. Kim, and J. Eckert, Designing Zr–Cu–Co–Al bulk metallic glasses with phase separation mediated plasticity, Metall. Mater. Trans. A 43 (2012), pp. 2598–2603.10.1007/s11661-011-1050-z
  • J. He, I. Kaban, N. Mattern, K. Song, B. Sun, J. Zhao, D.H. Kim, J. Eckert, and A.L. Greer, Local microstructure evolution at shear bands in metallic glasses with nanoscale phase separation, Sci. Rep. 6 (2016), p. 279.10.1038/srep25832
  • S. Chen, J. Tu, J. Wu, Q. Hu, S. Xie, J. Zou, and X. Zeng, Phase separation and significant plastic strain in a Zr–Cu–Ni–Al–Fe bulk metallic glass, Mater. Sci. Eng. A 656 (2016), pp. 84–89.
  • A.A. Kündig, M. Ohnuma, D.H. Ping, T. Ohkubo, and K. Hono, In situ formed two-phase metallic glass with surface fractal microstructure, Acta Mater. 52 (2004), pp. 2441–2448.10.1016/j.actamat.2004.01.036
  • E.S. Park, J.S. Kyeong, and D.H. Kim, Phase separation and improved plasticity by modulated heterogeneity in Cu–(Zr, Hf)–(Gd, Y)–Al metallic glasses, Scr. Mater. 57 (2007), pp. 49–52.10.1016/j.scriptamat.2007.03.008
  • J.H. Han, N. Mattern, U. Vainio, A. Shariq, S.W. Sohn, D.H. Kim, and J. Eckert, Phase separation in Zr56-xGdxCo28Al16 metallic glasses (0 ≤ x ≤ 20), Acta Mater. 66 (2014), pp. 262–272.10.1016/j.actamat.2013.11.013
  • A. Dubach, F.H. Dalla Torre, and J.F. Löffler, Constitutive model for inhomogeneous flow in bulk metallic glasses, Acta Mater. 57 (2009), pp. 881–892.10.1016/j.actamat.2008.10.027
  • F.H. Dalla Torre, D. Klaumünzer, R. Maaß, and J.F. Löffler, Stick-slip behavior of serrated flow during inhomogeneous deformation of bulk metallic glasses, Acta Mater. 58 (2010), pp. 3742–3750.10.1016/j.actamat.2010.03.011
  • B.A. Sun, S. Pauly, J. Hu, W.H. Wang, U. Kühn, and J. Eckert, Origin of intermittent plastic flow and instability of shear band sliding in bulk metallic glasses, Phys. Rev. Lett. 110 (2013), p. 42.10.1103/PhysRevLett.110.225501
  • B.A. Sun, H.B. Yu, W. Jiao, H.Y. Bai, D.Q. Zhao, and W.H. Wang, Plasticity of ductile metallic glasses: A self-organized critical state, Phys. Rev. Lett. 105 (2010), p. 175.10.1103/PhysRevLett.105.035501
  • G. Wang, K.C. Chan, L. Xia, P. Yu, J. Shen, and W.H. Wang, Self-organized intermittent plastic flow in bulk metallic glasses, Acta Mater. 57 (2009), pp. 6146–6155.10.1016/j.actamat.2009.08.040
  • X. Tong, G. Wang, J. Yi, J.L. Ren, S. Pauly, Y.L. Gao, Q.J. Zhai, N. Mattern, K.A. Dahmen, P.K. Liaw, and J. Eckert, Shear avalanches in plastic deformation of a metallic glass composite, Int. J. Plast. 77 (2016), pp. 141–155.10.1016/j.ijplas.2015.10.006
  • W.J. Wright, M.W. Samale, T.C. Hufnagel, M.M. LeBlanc, and J.N. Florando, Studies of shear band velocity using spatially and temporally resolved measurements of strain during quasistatic compression of a bulk metallic glass, Acta Mater. 57 (2009), pp. 4639–4648.10.1016/j.actamat.2009.06.013
  • J.J. Li, Z. Wang, and J.W. Qiao, Power-law scaling between mean stress drops and strain rates in bulk metallic glasses, Mater. Des. 99 (2016), pp. 427–432.10.1016/j.matdes.2016.03.092
  • J.L. Ren, C. Chen, Z.Y. Liu, R. Li, and G. Wang, Plastic dynamics transition between chaotic and self-organized critical states in a glassy metal via a multifractal intermediate, Phys. Rev. B 86 (2012), p. 507.10.1103/PhysRevB.86.134303
  • P. Thurnheer, R. Maaß, K.J. Laws, S. Pogatscher, and J.F. Löffler, Dynamic properties of major shear bands in Zr–Cu–Al bulk metallic glasses, Acta Mater. 96 (2015), pp. 428–436.10.1016/j.actamat.2015.05.028
  • P. Thurnheer, F. Haag, and J.F. Löffler, Time-resolved measurement of shear-band temperature during serrated flow in a Zr-based metallic glass, Acta Mater. 115 (2016), pp. 468–474.10.1016/j.actamat.2016.05.008
  • R. Maaß, D. Klaumünzer, and J.F. Löffler, Propagation dynamics of individual shear bands during inhomogeneous flow in a Zr-based bulk metallic glass, Acta Mater. 59 (2011), pp. 3205–3213.
  • Z.P. Lu and C.T. Liu, Glass formation criterion for various glass-forming systems, Phys. Rev. Lett. 91 (2003), p. 407.10.1103/PhysRevLett.91.115505
  • L. Ratke and S. Diefenbach, Liquid immiscible alloys, Mater. Sci. Eng. R 15 (1995), pp. 263–347.10.1016/0927-796X(95)00180-8
  • J. He, N. Mattern, J. Tan, J.Z. Zhao, I. Kaban, Z. Wang, L. Ratke, D.H. Kim, W.T. Kim, and J. Eckert, A bridge from monotectic alloys to liquid-phase-separated bulk metallic glasses: Design, microstructure and phase evolution, Acta Mater. 61 (2013), pp. 2102–2112.10.1016/j.actamat.2012.12.031
  • J.H. Han, N. Mattern, I. Kaban, D. Holland-Moritz, J. Bednarĉik, R. Nowak, N. Sobczak, D.H. Kim, and J. Eckert, Phase separation in ternary Co–Gd–Ti liquids, J. Phys-Condens. Mat. 25 (2013), p. 245104.10.1088/0953-8984/25/24/245104
  • B. Poon, D. Rittel, and G. Ravichandran, An analysis of nanoindentation in linearly elastic solids, Int. J. Solids Struct. 45 (2008), pp. 6018–6033.10.1016/j.ijsolstr.2008.07.021
  • S.X. Song and T.G. Nieh, Flow serration and shear-band viscosity during inhomogeneous deformation of a Zr-based bulk metallic glass, Intermetallics 17 (2009), pp. 762–767.10.1016/j.intermet.2009.03.005
  • R.T. Qu, Z.Q. Liu, G. Wang, and Z.F. Zhang, Progressive shear band propagation in metallic glasses under compression, Acta Mater. 91 (2015), pp. 19–33.10.1016/j.actamat.2015.03.026
  • G. Wilde and J.H. Perepezko, Critical-point wetting at the metastable chemical binodal in undercooled Fe–Cu alloys, Acta Mater. 47 (1999), pp. 3009–3021.10.1016/S1359-6454(99)00165-2
  • Y. Nakagawa, Liquid immiscibility in copper-iron and copper-cobalt systems in the supercooled state, Acta Metall. 6 (1958), pp. 704–711.10.1016/0001-6160(58)90061-0
  • R.M. Srivastava, J. Eckert, W. Löser, B.K. Dhindaw, and L. Schultz, Cooling rate evaluation for bulk amorphous alloys from eutectic microstructures in casting processes, Mater. Trans. 43 (2002), pp. 1670–1675.10.2320/matertrans.43.1670
  • L. Zhang, S. Pauly, M.Q. Tang, J. Eckert, and H.F. Zhang, Two-phase quasi-equilibrium in β-type Ti-based bulk metallic glass composites, Sci. Rep. 6 (2016), p. 1947.10.1038/srep19235
  • M. Hasegawa, T. Taketomi, H. Kato, T. Takeuchi, U. Mizutani, and A. Inoue, Comparative study on glassy phase stabilities of Zr–Co–Al and Zr–Ni–Al metallic glasses, Mater. Trans. 46 (2005), pp. 2785–2790.10.2320/matertrans.46.2785
  • T. Zhang and A. Inoue, New glassy Zr–Al–Fe and Zr–Al–Co alloys with a large supercooled liquid region, Mater. Trans. 43 (2002), pp. 267–270.10.2320/matertrans.43.267
  • Q. Wang, C. Dong, J. Qiang, and Y. Wang, Cluster line criterion and Cu–Zr–Al bulk metallic glass formation, Mater. Sci. Eng. A 449–451 (2007), pp. 18–23.10.1016/j.msea.2006.02.271
  • B.A. Sun, S. Pauly, J. Tan, M. Stoica, W.H. Wang, U. Kühn, and J. Eckert, Serrated flow and stick-slip deformation dynamics in the presence of shear-band interactions for a Zr-based metallic glass, Acta Mater. 60 (2012), pp. 4160–4171.10.1016/j.actamat.2012.04.013
  • M.A. Lebyodkin, Y. Brechet, Y. Estrin, and L.P. Kubin, Statistics of the catastrophic slip events in the Portevin–Le Châtelier effect, Phys. Rev. Lett. 74 (1995), pp. 4758–4761.10.1103/PhysRevLett.74.4758
  • F.F. Csikor, C. Motz, D. Weygand, M. Zaiser, and S. Zapperi, Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale, Science 318 (2007), pp. 251–254.10.1126/science.1143719
  • J.C. Qiao, Y. Yao, J.M. Pelletier, and L.M. Keer, Understanding of micro-alloying on plasticity in Cu46Zr47–xAl7Dyx (0 ≤ x ≤ 8) bulk metallic glasses under compression: Based on mechanical relaxations and theoretical analysis, Int. J. Plast. 82 (2016), pp. 62–75.10.1016/j.ijplas.2016.02.002
  • Z. Wang, J.W. Qiao, H. Tian, B.A. Sun, B.C. Wang, B.S. Xu, and M.W. Chen, Composition mediated serration dynamics in Zr-based bulk metallic glasses, Appl. Phys. Lett. 107 (2015), p. 201902.10.1063/1.4935834
  • Z. Wang, J.W. Qiao, G. Wang, K.A. Dahmen, P.K. Liaw, Z.H. Wang, B.C. Wang, and B.S. Xu, The mechanism of power-law scaling behavior by controlling shear bands in bulk metallic glass, Mater. Sci. Eng. A 639 (2015), pp. 663–670.10.1016/j.msea.2015.05.074
  • J.J. Li, J.W. Qiao, K.A. Dahmen, W.M. Yang, B.L. Shen, and M.W. Chen, Universality of slip avalanches in a ductile Fe-based bulk metallic glass, J. Iron Steel Res. Int. 24 (2017), pp. 366–371.10.1016/S1006-706X(17)30054-7
  • M. Aschwanden, Self-organized criticality phenomena. Self-organized criticality in astrophysics, Springer, Berlin, 2011, pp. 1–35.10.1007/978-3-642-15001-2
  • Y. Jiang, P.J. Swart, A. Saxena, M. Asipauskas, and J.A. Glazier, Hysteresis and avalanches in two-dimensional foam rheology simulations, Phys. Rev. E 59 (1999), pp. 5819–5832.10.1103/PhysRevE.59.5819
  • B.A. Sun, J. Tan, S. Pauly, U. Kühn, and J. Eckert, Stable fracture of a malleable Zr-based bulk metallic glass, J. Appl. Phys. 112 (2012), p. 103533.10.1063/1.4767327
  • S. Pauly, S. Gorantla, G. Wang, U. Kühn, and J. Eckert, Transformation-mediated ductility in CuZr-based bulk metallic glasses, Nat. Mater. 9 (2010), pp. 473–477.10.1038/nmat2767
  • J. Schroers and W.L. Johnson, Ductile bulk metallic glass, Phys. Rev. Lett. 93 (2004), p. 1947.10.1103/PhysRevLett.93.255506
  • J. Das, M.B. Tang, K.B. Kim, R. Theissmann, F. Baier, W.H. Wang, and J. Eckert, ‘Work-Hardenable’ ductile bulk metallic glass, Phys. Rev. Lett. 94 (2005), p. 2921.10.1103/PhysRevLett.94.205501
  • J.W. Qiao, H.L. Jia, and P.K. Liaw, Metallic glass matrix composites, Mater. Sci. Eng. R 100 (2016), pp. 1–69.10.1016/j.mser.2015.12.001
  • J. Li, Y.W. Wang, J. Yi, I. Hussain, R. Li, B. Zhang, and G. Wang, Strain-energy transport during fracture of metallic glasses, J. Alloy. Compd. 680 (2016), pp. 43–53.10.1016/j.jallcom.2016.04.117
  • K.F. Yao, F. Ruan, Y.Q. Yang, and N. Chen, Superductile bulk metallic glass, Appl. Phys. Lett. 88 (2006), pp. 122106–122103.10.1063/1.2187516
  • P. Zhao, J. Li, J. Hwang, and Y. Wang, Influence of nanoscale structural heterogeneity on shear banding in metallic glasses, Acta Mater. 134 (2017), pp. 104–115.10.1016/j.actamat.2017.05.057
  • C. Liu, V. Roddatis, P. Kenesei, and R. Maaß, Shear-band thickness and shear-band cavities in a Zr-based metallic glass, Acta Mater. 140 (2017), pp. 206–216.10.1016/j.actamat.2017.08.032
  • I. Binkowski, G.P. Shrivastav, J. Horbach, S.V. Divinski, and G. Wilde, Shear band relaxation in a deformed bulk metallic glass, Acta Mater. 109 (2016), pp. 330–340.10.1016/j.actamat.2016.02.061
  • T. Nizolek, M.R. Begley, R. McCabe, J.T. Avallone, N. Mara, I.J. Beyerlein, and T.M. Pollock, Strain fields induced by kink band propagation in Cu–Nb nanolaminate composites, Acta Mater. 133 (2017), pp. 303–315.10.1016/j.actamat.2017.04.050
  • B.A. Sun, Y. Yang, W.H. Wang, and C.T. Liu, The critical criterion on runaway shear banding in metallic glasses, Sci. Rep. 6 (2016), p. 607.10.1038/srep21388

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.