532
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Orientation-dependent deformation mechanisms of bcc niobium nanoparticles

, , &
Pages 1848-1864 | Received 17 Sep 2017, Accepted 14 Mar 2018, Published online: 03 Apr 2018

References

  • S. Luo , J. Wang , G. Xia , and Z. Li , Lift force on nanoparticles in shear flows of dilute gases: Negative or positive , J. Fluid Mech. 795 (2016), pp. 443–454.10.1017/jfm.2016.204
  • D. Malyshev , F. Boscá , C.L. Crites , G.L. Hallett-Tapley , J.C. Netto-Ferreira , E.I. Alarcon , and J.C. Scaiano , Size-controlled photochemical synthesis of niobium nanoparticles , Dalton Trans. 42 (2013), pp. 14049–14052.10.1039/c3dt51167 g
  • G. Prieto , J. Zečević , H. Friedrich , K.P. de Jong , and P.E. de Jongh , Towards stable catalysts by controlling collective properties of supported metal nanoparticles , Nat. Mater. 12 (2013), pp. 34–39.10.1038/nmat3471
  • W.W. Gerberich , W.M. Mook , C.R. Perrey , C.B. Carter , M.I. Baskes , R. Mukherjee , A. Gidwani , J. Heberlein , P.H. McMurry , and S.L. Girshick , Superhard silicon nanospheres , J. Mech. Phys. Solids 51 (2003), pp. 979–992.10.1016/S0022-5096(03)00018-8
  • W.W. Gerberich , W.M. Mook , M.J. Cordill , C.B. Carter , C.R. Perrey , J.V. Heberlein , and S.L. Girshick , Reverse plasticity in single crystal silicon nanospheres , Int. J. Plast. 21 (2005), pp. 2391–2405.10.1016/j.ijplas.2005.03.001
  • W.M. Mook , J.D. Nowak , C.R. Perrey , C.B. Carter , R. Mukherjee , S.L. Girshick , P.H. McMurry , and W.W. Gerberich , Compressive stress effects on nanoparticle modulus and fracture , Phys. Rev. B 75 (2007), p. 6416.10.1103/PhysRevB.75.214112
  • P. Valentini , W.W. Gerberich , and T. Dumitrică , Phase-transition plasticity response in uniaxially compressed silicon nanospheres , Phys. Rev. Lett. 99 (2007), p. 175701.10.1103/PhysRevLett.99.175701
  • N. Zhang , Q. Deng , Y. Hong , L. Xiong , S. Li , M. Strasberg , W. Yin , Y. Zou , C.R. Taylor , G. Sawyer , and Y. Chen , Deformation mechanisms in silicon nanoparticles , J. Appl. Phys. 109 (2011), p. 063534.10.1063/1.3552985
  • D. Chrobak , N. Tymiak , A. Beaber , O. Ugurlu , W.W. Gerberich , and R. Nowak , Deconfinement leads to changes in the nanoscale plasticity of silicon , Nat. Nanotechnol. 6 (2011), pp. 480–484.10.1038/nnano.2011.118
  • L. Yang , J.J. Bian , H. Zhang , X.R. Niu , and G.F. Wang , Size-dependent deformation mechanisms in hollow silicon nanoparticles , AIP Adv. 5 (2015), p. 077162.10.1063/1.4927509
  • P. Armstrong and W. Peukert , Size effects in the elastic deformation behavior of metallic nanoparticles , J. Nanopart. Res. 14 (2012), p. 3060.10.1007/s11051-012-1288-4
  • D. Mordehai , S.W. Lee , B. Backes , D.J. Srolovitz , W.D. Nix , and E. Rabkin , Size effect in compression of single-crystal gold microparticles , Acta Mater. 59 (2011), pp. 5202–5215.10.1016/j.actamat.2011.04.057
  • T. Kim , S. Myung , T.H. Kim , and S. Hong , Robust single-nanoparticle probe for contact-mode analysis and dip-pen nanolithography , Small 4 (2008), pp. 1072–1075.10.1002/smll.v4:8
  • J. Sun , L. He , Y.C. Lo , T. Xu , H. Bi , L. Sun , Z. Zhang , S.X. Mao , and J. Li , Liquid-like pseudoelasticity of sub-10-nm crystalline silver particles , Nat. Mater. 13 (2014), pp. 1007–1012.10.1038/nmat4105
  • C.E. Carlton and P.J. Ferreira , In situ TEM nanoindentation of nanoparticles , Micron 43 (2012), pp. 1134–1139.10.1016/j.micron.2012.03.002
  • D. Mordehai and E. Rabkin , Pseudoelastic deformation during nanoscale adhesive contact formation , Phys. Rev. Lett. 107 (2011), p. 449.10.1103/PhysRevLett.107.096101
  • J.J. Bian , X.R. Niu , H. Zhang , and G.F. Wang , Atomistic deformation mechanisms in twinned copper nanospheres , Nanoscale Res. Lett. 9 (2014), p. 335.10.1186/1556-276X-9-335
  • G. Casillas , J.P. Palomares-Báez , J.L. Rodríguez-López , J. Luo , A. Ponce , R. Esparza , J.J. Velázquez-Salazar , A. Hurtado-Macias , J. González-Hernández , and M. José-Yacaman , In situ TEM study of mechanical behavior of twinned nanoparticles , Philos. Mag. 92 (2012), pp. 4437–4453.10.1080/14786435.2012.709951
  • L. Yang , J.J. Bian , and G.F. Wang , Impact of atomic-scale surface morphology on the size-dependent yield stress of gold nanoparticles , J. Phys. D: Appl. Phys. 50 (2017), p. 245302.10.1088/1361-6463/aa7096
  • S.B. Haj Salah , C. Gerard , and L. Pizzagalli , Influence of surface atomic structure on the mechanical response of aluminum nanospheres under compression , Comput. Mater. Sci. 129 (2017), pp. 273–278.10.1016/j.commatsci.2016.12.033
  • J.J. Bian and G.F. Wang , Atomistic deformation mechanisms in copper nanoparticles , J. Comput. Theor. Nanosci. 10 (2013), pp. 2299–2303.10.1166/jctn.2013.3201
  • W.Z. Han , L. Huang , S. Ogata , H. Kimizuka , Z.C. Yang , C. Weinberger , Q.J. Li , B.Y. Liu , X.X. Zhang , J. Li , E. Ma , and Z.W. Shan , From ‘smaller is stronger’ to ‘size-independent strength plateau’: towards measuring the ideal strength of iron , Adv. Mater. 27 (2015), pp. 3385–3390.10.1002/adma.v27.22
  • R. Kositski , O. Kovalenko , S. Lee , J.R. Greer , E. Rabkin , and D. Mordehai , Cross-split of dislocations: an athermal and rapid plasticity mechanism , Sci. Rep. 6 (2016), p. 962.10.1038/srep25966
  • R. Kositski and D. Mordehai , Depinning-controlled plastic deformation during nanoindentation of BCC iron thin films and nanoparticles , Acta Mater. 90 (2015), pp. 370–379.10.1016/j.actamat.2015.03.010
  • J. Alcalá , R. Dalmau , O. Franke , M. Biener , J. Biener , and A. Hodge , Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces , Phys. Rev. Lett. 109 (2012), p. 075502.10.1103/PhysRevLett.109.075502
  • J.P. Hirth , and J. Lothe , Theory of Dislocations , 2nd ed., Wiley-Interscience Publication, New York, 1982.
  • V. Vítek , R.C. Perrin , and D.K. Bowen , The core structure of 1/2<1 1 1> screw dislocations in BCC crystals , Philos. Mag. 21 (1970), pp. 1049–1073.10.1080/14786437008238490
  • R. Gröger , A.G. Bailey , and V. Vitek , Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2<1 1 1> screw dislocations at 0 K , Acta Mater. 56 (2008), pp. 5401–5411.10.1016/j.actamat.2008.07.018
  • R. Gröger , V. Racherla , J.L. Bassani , and V. Vitek , Multiscale modeling of plastic deformation of molybdenum and tungsten: II. Yield criterion for single crystals based on atomistic studies of glide of 1/2<1 1 1> screw dislocations , Acta Mater. 56 (2008), pp. 5412–5425.10.1016/j.actamat.2008.07.037
  • M.R. Fellinger , H. Park , and J.W. Wilkins , Force-matched embedded-atom method potential for niobium , Phys. Rev. B 81 (2010), p. 317.10.1103/PhysRevB.81.144119
  • S.A. Nosé , A unified formulation of the constant temperature molecular dynamics methods , J. Chem. Phys. 81 (1984), pp. 511–519.10.1063/1.447334
  • W.G. Hoover , Canonical dynamics: Equilibrium phase-space distributions , Phys. Rev. A 31 (1985), pp. 1695–1697.10.1103/PhysRevA.31.1695
  • H. Tsuzuki , P.S. Branicio , and J.P. Rino , Structural characterization of deformed crystals by analysis of common atomic neighborhood , Comput. Phys. Commun. 177 (2007), pp. 518–523.10.1016/j.cpc.2007.05.018
  • J.A. Zimmerman , C.L. Kelchner , P.A. Klein , J.C. Hamilton , and S.M. Foiles , Surface step effects on nanoindentation , Phys. Rev. Lett. 87 (2001), p. R16057.10.1103/PhysRevLett.87.165507
  • A. Stukowski , Visualization and analysis of atomistic simulation data with OVITO – The Open Visualization Tool , Modell. Simul. Mater. Sci. Eng. 18 (2010), p. 015012.10.1088/0965-0393/18/1/015012
  • A. Stukowski , V.V. Bulatov , and A. Arsenlis , Automated identification and indexing of indexing of dislocations in crystal interfaces , Modell. Simul. Mater. Sci. Eng. 20 (2012), p. 085007.10.1088/0965-0393/20/8/085007
  • H.S. Park , K. Gall , and J.A. Zimmerman , Deformation of FCC nanowires by twinning and slip , J. Mech. Phys. Solids 54 (2006), pp. 1862–1881.10.1016/j.jmps.2006.03.006
  • B. Luan and M.O. Robbins , The breakdown of continuum models for mechanical contacts , Nature 435 (2005), pp. 929–932.10.1038/nature03700
  • G.F. Wang , J.J. Bian , J. Feng , and X.Q. Feng , Compressive behavior of crystalline nanoparticles with atomic-scale surface stpes , Mater. Res. Express 2 (2015), p. 015006.
  • A.F. Bower , Applied Mechanics of Solids , Taylor & Francis Group, CRC Press, Boca Raton, 2010.
  • C.Q. Chen , Y. Shi , Y.S. Zhang , J. Zhu , and Y.J. Yan , Size dependence of young’s modulus in ZnO nanowires , Phys. Rev. Lett. 96 (2006), p. 483.10.1103/PhysRevLett.96.075505
  • J. Wang , Z. Zeng , C.R. Weinberger , Z. Zhang , T. Zhu , and S.X. Mao , In situ atomic-scale observation of twinning-dominated deformation in nanoscale body-centered cubic tungsten , Nature Mater. 14 (2015), pp. 594–600.10.1038/nmat4228
  • T.P. Remington , C.J. Ruestes , E.M. Bringa , B.A. Remington , C.H. Lu , B. Kad , and M.A. Meyers , Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation , Acta Mater. 78 (2014), pp. 378–393.10.1016/j.actamat.2014.06.058
  • G. Sainath and B.K. Choudhary , Orientation dependent deformation behavior of BCC ion nanowires , Comput. Mater. Sci. 111 (2016), pp. 406–415.10.1016/j.commatsci.2015.09.055

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.