1,916
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A new theory of the solid-state growth of embryos during nucleation: the fundamental role of interfacial mobility

Pages 2035-2060 | Received 29 Aug 2017, Accepted 19 Apr 2018, Published online: 28 May 2018

References

  • S. Karthika , T.K. Radhakrishnan , and P. Kalaichelvi , A review of classical and nonclassical nucleation theories , Cryst. Growth Des. 16 (2016), pp. 6663–6681.10.1021/acs.cgd.6b00794
  • Y. Peng , F. Wang , Z. Wang , A.M. Alsayed , Z. Zhang , A.G. Yodh , and Y. Han , Movies 2, 3 and 4 from: Two-step nucleation mechanism in solid–solid phase transitions , Nat. Mater. 14 (2015). Available at https://www.nature.com/articles/nmat4083#supplementary-information.10.1038/nmat4083
  • S.Y. Hu , M.I. Baskes , M. Stan , and L.Q. Chen , Atomistic calculations of interfacial energies, nucleus shape and size of θ′ precipitates in Al–Cu alloys , Acta Mater. 54 (2006), pp. 4699–4707.10.1016/j.actamat.2006.06.010
  • V. Fallah , A. Korinek , N. Ofori-Opoku , N. Provatas , and S. Esmaeili , Atomistic investigation of clustering phenomenon in the Al-Cu system: Three-dimensional phase-field crystal simulation and HRTEM/HRSTEM characterization , Acta Mater. 61 (2013), pp. 6372–6386.10.1016/j.actamat.2013.07.015
  • V. Fallah , A. Korinek , N. Ofori-Opoku , N. Provatas , and S. Esmaeili , Addendum to: “Atomistic investigation of clustering phenomenon in the Al–Cu system: Three-dimensional phase-field crystal simulation and HRTEM/HRSTEM characterization” [Acta Mater. 61 (2013) 6372–6386] , Acta Mater. 83(2015) (2013), pp. 470–472.
  • L. Farkas , The speed of germinitive formation in over saturated vapours , Z. Phys. Chem. 125 (1927), pp. 236–242.
  • R. Becker and W. Döring , Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , Ann. Physik. 416 (1935), pp. 719–752.10.1002/(ISSN)1521-3889
  • J.B. Zeldovich , On the theory of new phase formation: cavitation , Acta Physicochim. URSS 18 (1943), pp. 1–22.
  • F. Soisson and G. Martin , Monte Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics , Phys. Rev. B 62 (2000), pp. 203–214.10.1103/PhysRevB.62.203
  • F. Soisson , A. Barbu , and G. Martin , Monte Carlo simulations of copper precipitation in dilute iron-copper alloys during thermal ageing and under electron irradiation , Acta Mater. 44 (1996), pp. 3789–3800.10.1016/1359-6454(95)00447-5
  • C. Liu , S.K. Malladi , Q. Xu , J. Chen , F.D. Tichelaar , X. Zhuge , and H.W. Zandbergen , In-situ STEM imaging of growth and phase change of individual CuAlX precipitates in Al alloy , Sci Rep. 7 (2017). Available at https://www.nature.com/articles/s41598-017-02081-9#author-information.10.1038/s41598-017-02081-9
  • I.M. Lifshitz and V.V. Slyozov , The kinetics of precipitation from supersaturated solid solutions , J. Phys. Chem. Solids 19 (1961), pp. 35–50.10.1016/0022-3697(61)90054-3
  • C. Wagner , Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung) , Z. Elektrochemie 65 (1961), pp. 581–591.
  • P.W. Voorhees , The theory of Ostwald ripening , J. Stat. Phys. 38 (1985), pp. 231–252.10.1007/BF01017860
  • J. Sietsma and S. van der Zwaag , A concise model for mixed-mode phase transformations in the solid state , Acta Mater. 52 (2004), pp. 4143–4152.10.1016/j.actamat.2004.05.027
  • D. Larouche , Mixed mode growth of an ellipsoidal precipitate: analytical solution for shape preserving growth in the quasi-stationary regime , Acta Mater. 123 (2017), pp. 188–196.10.1016/j.actamat.2016.10.031
  • J.W. Christian , The Theory of Transformations in Metals and Alloys; An Advanced Textbook in Physical Metallurgy , Pergamon Press, Oxford, 1965.
  • M. Hillert , Phase Equilibria, Phase Diagrams and Phase Transformations : Their Thermodynamic Basis , 2nd ed., Cambridge University Press, Cambridge, 2008.
  • E. Kozeschnik , Modeling Solid-state Precipitation , Momentum Press, New York, NY , 2013.
  • M. Hillert , Applications of Gibbs energy–composition diagrams , in Lectures on the Theory of Phase Transformations , H.I. Aaronson , ed., American Institute of Mining, Metallurgical and Petroleum Engineers, New York, NY , 1975, pp. 1–50.
  • K.S. Chan , J.K. Lee , G.J. Shiflet , K.C. Russell , and H.I. Aaronson , Generalization of the nucleus shape-dependent parameters in the nucleation rate equation , Metall. Trans. A 9 (1978), pp. 1016–1017.10.1007/BF02649849
  • H.I. Aaronson , J.K. Lee , The kinetic equations of solid-solid nucleation theory and comparisons with experimental observations, in Lectures on the Theory of Phase Transformations , H.I. Aaronson ed., TMS-AIME, Warrendale, PA , 1975, pp. 83–116.
  • G. Martin , The theories of unmixing kinetics of solid solutions, in Solid State Phase Transformation in Metals and Alloys , Les Éditions de Physique (1979), pp. 337–406.
  • D.A. Porter , K.E. Easterling , and M.Y. Sherif , Phase Transformations in Metals and Alloys , CRC Press, Boca Raton, FL, 1992.10.1007/978-1-4899-3051-4
  • O.R. Myhr and Ø. Grong , Modelling of non-isothermal transformations in alloys containing a particle distribution , Acta Mater. 48 (2000), pp. 1605–1615.10.1016/S1359-6454(99)00435-8
  • H.I. Aaronson , M. Enomoto , and J.K. Lee , Mechanisms of Diffusional Phase Transformations in Metals and Alloys , Taylor & Francis, Boca Raton, FL, 2010.10.1201/b15829
  • J. Feder , K.C. Russell , J. Lothe , and G.M. Pound , Homogeneous nucleation and growth of droplets in vapours , Adv. Phys. 15 (1966), pp. 111–178.10.1080/00018736600101264
  • V. Perovic , G.R. Purdy , and L.M. Brown , Autocatalytic nucleation and elastic stabilization of linear arrays of plate-shaped precipitates , Acta Metall. 29 (1981), pp. 889–902.10.1016/0001-6160(81)90131-0
  • A.D. Polyanin , V.F. Zaitsev , and A. Moussiaux , Handbook of First Order Partial Differential Equations , Taylor & Francis, London, 2002.
  • V. Vaithyanathan , C. Wolverton , and L.Q. Chen , Multiscale modeling of θ′ precipitation in Al–Cu binary alloys , Acta Mater. 52 (2004), pp. 2973–2987.10.1016/j.actamat.2004.03.001
  • S. Hu , M. Baskes , M. Stan , and L. Chen , Atomistic calculations of interfacial energies, nucleus shape and size of θ′ precipitates in Al–Cu alloys , Acta Mater. 54 (2006), pp. 4699–4707.10.1016/j.actamat.2006.06.010
  • V. Kokotin and U. Hecht , Molecular dynamics simulations of Al–Al2Cu phase boundaries , Comput. Mater. Sci. 86 (2014), pp. 30–37.10.1016/j.commatsci.2014.01.014
  • E. Ho and G.C. Weatherly , Interface diffusion in the Al-CuAl2 eutectic , Acta Metall. 23 (1975), pp. 1451–1460.10.1016/0001-6160(75)90154-6
  • B. Sonderegger and E. Kozeschnik , Generalized nearest-neighbor broken-bond analysis of randomly oriented coherent interfaces in multicomponent Fcc and Bcc structures, Metall. Mater. Trans. 40A (2009), pp. 499–510.10.1007/s11661-008-9752-6
  • F.R.N. Nabarro , The Strains Produced by Precipitation in Alloys , Proc. Roy. Soc. London A175 (1940), pp. 519–538.10.1098/rspa.1940.0072
  • I. Wierszytlowski , S. Wieczorek , A. Stankowiak , and J. Samolczyk , Kinetics of transformation during supersaturation and aging of the Al-4.7mass%Cu alloy: Grain size, dilatometric, and differential thermal analysis studies, J. Phase Equilib. Diffus. 26 (2005), pp. 555–560.10.1007/s11669-005-0050-3
  • E.M. Elgallad , Z. Zhang , and X.G. Chen , Effect of quenching rate on precipitation kinetics in AA2219 DC cast alloy , Phys. B 514 (2017), pp. 70–77.10.1016/j.physb.2017.03.039