2,403
Views
2
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Generation and accumulation of atomic vacancies due to dislocation movement and pair annihilation

Pages 2275-2295 | Received 27 Dec 2017, Accepted 22 Apr 2018, Published online: 19 Jun 2018

References

  • J.-I. Takamura, I. Takahashi, and M. Amano, Lattice defects in deformed low-carbon steels and the annealing stage, Trans. Iron Steel Inst. Jpn. 9 (1969), pp. 216–221.
  • H. Kimura and R. Maddin, Concentration of vacancies in gold single crystals deformed at high temperatures, Acta Metall. 12 (1964), pp. 1065–1069. doi: 10.1016/0001-6160(64)90078-1
  • D.R. Trinkle, Automatic numerical evaluation of vacancy-mediated transport for arbitrary crystals: Onsager coefficients in the dilute limit using a green function approach, Philos. Mag. 97 (2017), pp. 2514–2563. doi: 10.1080/14786435.2017.1340685
  • E. Ozawa and H. Kimura, Excess vacancies and the nucleation of precipitates in aluminum-silicon alloys, Acta Metall. 18 (1970), pp. 995–1004. doi: 10.1016/0001-6160(70)90055-6
  • M. Feller-Kniepmeier and J. Gobrecht, Influence of excess vacancies on recrystallization of high purity gold, Acta Metall. 19 (1971), pp. 569–576. doi: 10.1016/0001-6160(71)90009-5
  • Y. Estrin and K. Lücke, Theory of vacancy-controlled grain boundary motion, Acta Metall. 30 (1982), pp. 983–998. doi: 10.1016/0001-6160(82)90206-1
  • S.L. Semiatin, M.W. Corbett, P.N. Fagin, G.A. Salishchev, and C.S. Lee, Dynamic-coarsening behavior of an α/β titanium alloy, Metall. Mater. Trans. A. 37 (2006), pp. 1125–1136. doi: 10.1007/s11661-006-1091-x
  • F.R.N. Nabarro, Kinetics of Mughrabi’s model of internal stresses, Acta Metall. Mater. 38 (1990), pp. 637–641. doi: 10.1016/0956-7151(90)90219-7
  • A.M. Cuitiño and M. Ortiz, Ductile fracture by vacancy condensation in F.C.C. single crystals, Acta Mater. 44 (1996), pp. 427–436. doi: 10.1016/1359-6454(95)00220-0
  • S.H. Goods and L.M. Brown, Overview No. 1. The nucleation of cavities by plastic deformation, Acta Metall. 27 (1979), pp. 1–15. doi: 10.1016/0001-6160(79)90051-8
  • V.A. Lubarda, M.S. Schneider, D.H. Kalantar, B.A. Remington, and M.A. Meyers, Void growth by dislocation emission, Acta Mater. 52 (2004), pp. 1397–1408. doi: 10.1016/j.actamat.2003.11.022
  • L.M. Hsiung and N.S. Stoloff, A point defect model for fatigue crack initiation in Ni3Al + B single crystals, Acta Metall. Mater. 38 (1990), pp. 1191–1200. doi: 10.1016/0956-7151(90)90192-J
  • J. Man, K. Obrtlík, and J. Polák, Extrusions and intrusions in fatigued metals. Part 1. State of the art and history, Philos. Mag. 89 (2009), pp. 1295–1336. doi: 10.1080/14786430902917616
  • J. Man, P. Klapetek, O. Man, A. Weidner, K. Obrtlík, and J. Polák, Extrusions and intrusions in fatigued metals. Part 2. AFM and EBSD study of the early growth of extrusions and intrusions in 316L steel fatigued at room temperature, Philos. Mag. 89 (2009), pp. 1337–1372. doi: 10.1080/14786430902917624
  • F.P.E. Dunne, Fatigue crack nucleation: mechanistic modelling across the length scales, Curr. Opin. Solid State Mater. Sci. 18 (2014), pp. 170–179. doi: 10.1016/j.cossms.2014.02.005
  • S.D. Antolovich and R.W. Armstrong, Plastic strain localization in metals: origins and consequences, Prog. Mater. Sci. 59 (2014), pp. 1–160. doi: 10.1016/j.pmatsci.2013.06.001
  • I.S. Yasnikov, A. Vinogradov, and Y. Estrin, Revisiting the Considere criterion from the viewpoint of dislocation theory fundamentals, Scr. Mater. 76 (2014), pp. 37–40. doi: 10.1016/j.scriptamat.2013.12.009
  • A. Vinogradov, I.S. Yasnikov, H. Matsuyama, M. Uchida, Y. Kaneko, and Y. Estrin, Controlling strength and ductility: dislocation-based model of necking instability and its verification for ultrafine grain 316L steel, Acta Mater. 106 (2016), pp. 295–303. doi: 10.1016/j.actamat.2016.01.005
  • M. Nagumo, T. Yagi, and H. Saitoh, Deformation-induced defects controlling fracture toughness of steel revealed by tritium desorption behaviors, Acta Mater. 48 (2000), pp. 943–951. doi: 10.1016/S1359-6454(99)00392-4
  • K. Sakaki, T. Kawase, M. Hirato, M. Mizuno, H. Araki, Y. Shirai, and M. Nagumo, The effect of hydrogen on vacancy generation in iron by plastic deformation, Scr. Mater. 55 (2006), pp. 1031–1034. doi: 10.1016/j.scriptamat.2006.08.030
  • S. Li, Y. Li, Y. C. Lo, T. Neeraj, R. Srinivasan, X. Ding, J. Sun, L. Qi, P. Gumbsch and J. Li, The interaction of dislocations and hydrogen-vacancy complexes and its importance for deformation-induced proto nano-voids formation in α-Fe, Int. J. Plast. 74 (2015), pp. 175–191. doi: 10.1016/j.ijplas.2015.05.017
  • U. Essmann and H. Mughrabi, Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities, Philos. Mag. A 40 (1979), pp. 731–756. doi: 10.1080/01418617908234871
  • T. Ohashi, Computer simulation of non-uniform multiple slip in face centered cubic bicrystals, Trans. JIM 28 (1987), pp. 906–915. doi: 10.2320/matertrans1960.28.906
  • U.F. Kocks and H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003), pp. 171–273. doi: 10.1016/S0079-6425(02)00003-8
  • U.F. Kocks, Laws for work-hardening and low-temperature creep, Trans. ASME, J. Eng. Mat. Tech. 98 (1976), pp. 76–85. doi: 10.1115/1.3443340
  • H. Mecking and U.F. Kocks, Kinetics of flow and strain-hardening, Acta Metall. 29 (1981), pp. 1865–1875. doi: 10.1016/0001-6160(81)90112-7
  • T. Ohashi, M. Kawamukai, and H. Zbib, A multiscale approach for modeling scale-dependent yield stress in polycrystalline metals, Int. J. Plast. 23 (2007), pp. 897–914. doi: 10.1016/j.ijplas.2006.10.002
  • T. Ohashi and Y. Okuyama, Crystal plasticity analysis of mechanical response and size effect in two phase alloys with dispersion of fine particles, Key Eng. Mater. 725 (2017), pp. 267–272. doi: 10.4028/www.scientific.net/KEM.725.267
  • T. Ohashi, Finite-element analysis of plastic slip and evolution of geometrically necessary dislocations in fcc crystals. Philos. Mag. Lett. 75 (1997), pp. 51–57. doi: 10.1080/095008397179741
  • T. Ohashi, Three-demensional structures of the geometrically necessary dislocations generated from non-uniformities in metal microstructures, in IUTAM Symposium on Multiscale Modeling and Characterization of Elastic-Inelastic Behavior of Engineering Materials, S. Ahzi, M. Cherkaoui, M.A. Khaleel, H.M. Zbib, M.A. Zikry, and B. Lamatina, eds., Kluwer Academic Publishers, Dordrecht, 2002, pp. 183–190.
  • T. Ohashi, A New model of scale dependent crystal plasticity analysis, in IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength, H. Kitagawa and Y. Shibutani, eds., Kluwer Academic Publishers, Dordrecht, 2003, pp. 97–106.
  • T. Ohashi, Three dimensional structures of the geometrically necessary dislocations in matrix-inclusion systems under uniaxial tensile loading, Int. J. Plast. 20 (2004), pp. 1093–1109. doi: 10.1016/j.ijplas.2003.10.005
  • T. Ohashi, Crystal plasticity analysis of dislocation emission from micro voids, Int. J. Plast. 21 (2005), pp. 2071–2088. doi: 10.1016/j.ijplas.2005.03.018
  • D. Kuhlmann-Wilsdorf, Theory of plastic deformation: - properties of low energy dislocation structures, Mater. Sci. Eng. A 113 (1989), pp. 1–41. doi: 10.1016/0921-5093(89)90290-6
  • T. Ohashi, M. Kawamukai, and H. Zbib, Crystal plasticity modeling of scale dependency of yield stress for metal polycrystals, International Symposium on Plasticity 2006, Halifax, 2006.
  • I.S. Yasnikov, Y. Estrin, and A. Vinogradov, What governs ductility of ultrafine-grained metals? A microstructure based approach to necking instability, Acta Mater. 141 (2017), pp. 18–28. doi: 10.1016/j.actamat.2017.08.069