349
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Electronic and atomic structures of edge and screw dislocations in rock salt structured ionic crystals

, ORCID Icon, &
Pages 2189-2204 | Received 11 Jan 2018, Accepted 09 May 2018, Published online: 16 Jun 2018

References

  • C.M. Van Der Walt and M.J. Sole, On the plastic behaviour of crystals with the NaCl-structure, Acta Metall. 15 (1967), pp. 459–462. doi: 10.1016/0001-6160(67)90076-4
  • J.F. Nye, Plastic deformation of silver chloride. I. Internal stresses and the glide mechanism, Proc. Royal Soc. A. 198 (1949), pp. 190–204. doi: 10.1098/rspa.1949.0094
  • F. Vávra, Etch pits in AgCl crystals, Czech. J. Phys. B. 19 (1969), pp. 776–782. doi: 10.1007/BF01697133
  • F. Vávra and Z. Ševčík, Formation of wavy slip bands in AgCl crystals at low temperatures, Czech. J. Phys. B. 36 (1986), pp. 509–513. doi: 10.1007/BF01597632
  • A. Nakamura, M. Ukita, N. Shimoda, Y. Furushima, K. Toyoura, and K. Matsunaga, First-principles calculations on slip system activation in the rock salt structure: Electronic origin of ductility in silver chloride, Phil. Mag. 97 (2017), pp. 1281–1310. doi: 10.1080/14786435.2017.1294270
  • R.G. Hoagland, J.P. Hirth, and P.C. Gehlen, Atomic simulation of the dislocation core sturucture and Peierls stress in alkali halide, Phil. Mag. 34 (1976), pp. 413–439. doi: 10.1080/14786437608222033
  • C.H. Woo and M.P. Puls, The Peierls mechanism in MgO, Phil. Mag. 35 (1977), pp. 1641–1652. doi: 10.1080/14786437708232984
  • M.P. Puls and C.B. So, The core structure of an edge dislocation in NaCl, Phys. Stat. Sol. (b). 98 (1980), pp. 87–96. doi: 10.1002/pssb.2220980107
  • J. Amodeo, P. Carrez, B. Devincre, and P. Cordier, Multiscale modelling of MgO plasticity, Acta. Mater. 59 (2011), pp. 2291–2301. doi: 10.1016/j.actamat.2010.12.020
  • P.H. Carrez, J. Godet, and P. Cordier, Atomic simulations of ½<110>screw dislocation core in magnesium oxide, Comput. Mater. Sci. 103 (2015), pp. 250–255. doi: 10.1016/j.commatsci.2014.10.019
  • P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B. 50 (1994), pp. 17953–17979. doi: 10.1103/PhysRevB.50.17953
  • G. Kresse and J. Hafner, Ab initio molecular dynamics for open-shell transition metals, Phys. Rev. B. 48 (1993), pp. 13115–13118. doi: 10.1103/PhysRevB.48.13115
  • J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • H.J. Monkhorst and J. D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B. 13 (1976), pp. 5188–5192. doi: 10.1103/PhysRevB.13.5188
  • D.S. Puri and M.P. Verma, Many body effects on third order elastic constants of sodium chloride structure solids, Solid State Commun. 18 (1976), pp. 1295–1298. doi: 10.1016/0038-1098(76)90962-5
  • W.C. Hughes and L.S. Cain, Second-order elastic constants of AgCl from 20 to 430, Phys. Rev. B 53 (1996), pp. 5174–5180. doi: 10.1103/PhysRevB.53.5174
  • W. Cai, V.V. Bulatob, J. Chang, J. Li, and S. Yip, Periodic image effects in dislocation modelling, Phil. Mag. 83 (2003), pp. 539–567. doi: 10.1080/0141861021000051109
  • W. Cai, V.V. Bulatov, J. Chang, J. Li, and S. Yip, Anisotropic elastic interactions of a periodic dislocation array, Phys. Rev. Lett. 86 (2001), pp. 5727–5730. doi: 10.1103/PhysRevLett.86.5727
  • J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Willey, New York, 1982.
  • C.S. Hartley and Y. Mishin, Characterization and visualization of the lattice misfit associated with dislocation cores, Acta Mater. 53 (2005), pp. 1313–1321. doi: 10.1016/j.actamat.2004.11.027
  • E. Clouet, D. Caillard, N. Chaari, F. Onimus, and D. Rodney, Dislocation locking versus easy glide in titanium and zirconium, Nat. Mater. 14 (2015), pp. 931–936. doi: 10.1038/nmat4340
  • V. Vitek, R.C. Perrin, and D.K. Brown, The core structure of ½<111> screw dislocations in B.C.C crystals, Phil. Mag. 21 (1970), pp. 1049–1073. doi: 10.1080/14786437008238490
  • V. Vitek, Theory of the core structures of dislocations in body-centered-cubic metals, Cryst Lattice Defects. 5 (1974), pp. 1–34.
  • S.K. Yadav, R. Ramprasad, A. Misra, and X.Y. Liu, Core structure and Peierls stress of edge and screw dislocations in TiN: A density functional theory study, Acta Mater. 74 (2014), pp. 268–277. doi: 10.1016/j.actamat.2014.04.047
  • S. Ismail-Beigi and T.A. Arias, Ab initio study of screw dislocations in Mo and Ta: A new picture of plasticity in bcc transition metals, Phys. Rev. Lett. 84 (2000), pp. 1499–1502. doi: 10.1103/PhysRevLett.84.1499
  • W. Tang, E. Sanville, and G. Henkelman, A grid-based Bader analysis algorithm without lattice bias, J. Phys.: Cond. Matter. 21 (2009), pp. 1–7.
  • T. Suzuki and S. Takeuchi, Deformation of Crystals Controlled by the Peierls Mechanism of the Smooth Kink Regime, Crystal Lattice Defects and Dislocation Dynamics, R.A. Vardanian, eds., Nova Science Pub., New York, 2001, pp. 1–70.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.