448
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Interdiffusion and thermotransport in Ni–Al liquid alloys

, ORCID Icon, , , &
Pages 2221-2246 | Received 09 Feb 2018, Accepted 15 May 2018, Published online: 14 Jun 2018

References

  • M.S. Daw and M.I. Baskes, Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B. 29 (1984), pp. 6443–6453. doi: 10.1103/PhysRevB.29.6443
  • D. Miracle, Overview No. 104 the physical and mechanical properties of NiAl, Acta Metall. Mater. 41 (1993), pp. 649–684. doi: 10.1016/0956-7151(93)90001-9
  • J.H. Westbrook, R.L. Fleischer, Structural Applications of Intermetallic Compounds, Wiley, New York, 2000
  • T.M. Pollock and S. Tin, Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure, and properties, J. Propul. Power. 22 (2006), pp. 361–374. doi: 10.2514/1.18239
  • S. Deevi, P. Maziasz, V. Sikka, and R. Cahn, Proceedings of the international symposium on nickel and iron aluminides: Processing, properties, and applications, 1997.
  • S. Deevi, D. Morris, J. Schneibel, and V. Sikka, Iron Aluminides: Alloy Design, Processing, Properties and Applications, TMS Meeting, San Antonio, TX, 15–19 February, 1998.
  • M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi, Solidification microstructures and solid-state parallels: Recent developments, future directions, Acta Mater. 57 (2009), pp. 941–971. doi: 10.1016/j.actamat.2008.10.020
  • L. Zhang, Y. Du, I. Steinbach, Q. Chen, and B. Huang, Diffusivities of an Al–Fe–Ni melt and their effects on the microstructure during solidification, Acta Mater. 58 (2010), pp. 3664–3675. doi: 10.1016/j.actamat.2010.03.002
  • J.A. Dantzig, C.L. Tucker, Modeling in Materials Processing, Cambridge University Press, Cambridge, 2001
  • J. Campbell, Castings, Butterworth-Heinemann, 2003.
  • W.J. Boettinger, J.A. Warren, C. Beckermann, and A. Karma, Phase-field simulation of solidification, Annu. Rev. Mater. Res. 32 (2002), pp. 163–194. doi: 10.1146/annurev.matsci.32.101901.155803
  • G. Kasperovich, A. Meyer, and L. Ratke, Microsegregation in AlCu4 and the importance of accurate liquid diffusion data, Giessereiforschung, 62 (2010), p. 8.
  • E. Sondermann, F. Kargl, and A. Meyer, Influence of cross correlations on interdiffusion in Al-rich Al-Ni melts, Phys. Rev. B. 93 (2016), p. 8. doi: 10.1103/PhysRevB.93.184201
  • P. Kuhn, J. Horbach, F. Kargl, A. Meyer, and T. Voigtmann, Diffusion and interdiffusion in binary metallic melts, Phys. Rev. B. 90 (2014), p. 8.
  • J. Horbach, S.K. Das, A. Griesche, M.-P. Macht, G. Frohberg, and A. Meyer, Self-diffusion and interdiffusion in Al80Ni20 melts: Simulation and experiment, Phys. Rev. B. 75 (2007), p. 430. doi: 10.1103/PhysRevB.75.174304
  • A. Kerrache, J. Horbach, and K. Binder, Molecular-dynamics computer simulation of crystal growth and melting in Al50Ni50, EPL (Europhys. Lett.). 81 (2008), p. 58001. doi: 10.1209/0295-5075/81/58001
  • A. Griesche, B. Zhang, J. Horbach, and A. Meyer, Atomic diffusion and its relation to thermodynamic forces in Al-Ni melts, Defect Diff. Forum. 289-292 (2009), pp. 705–710. doi: 10.4028/www.scientific.net/DDF.289-292.705
  • X.Q. Zheng, Y. Yang, Y.F. Gao, J.J. Hoyt, M. Asta, and D.Y. Sun, Disorder trapping during crystallization of the B2-ordered NiAl compound, Phys. Rev. E. 85 (2012), p. 1182, 04p. doi: 10.1103/PhysRevE.85.041601
  • C. Tang and P. Harrowell, Anomalously slow crystal growth of the glass-forming alloy CuZr, Nat. Mater. 12 (2013), pp. 507–511. doi: 10.1038/nmat3631
  • A.V. Evteev, E.V. Levchenko, I.V. Belova, R. Kozubski, Z.K. Liu, and G.E. Murch, Theoretical study of the heat of transport in a liquid Ni50Al50 alloy: Green-Kubo approach, Diff. Found. 2 (2014), pp. 159–189. doi: 10.4028/www.scientific.net/DF.2.159
  • A.V. Evteev, E.V. Levchenko, I.V. Belova, R. Kozubski, Z.-K. Liu, and G.E. Murch, Thermotransport in binary system: Case study on Ni50Al50 melt, Philos. Mag. 94 (2014), pp. 3574–3602. doi: 10.1080/14786435.2014.965236
  • A.V. Evteev, E.V. Levchenko, L. Momenzadeh, Y. Sohn, I.V. Belova, and G.E. Murch, Molecular dynamics study of phonon-mediated thermal transport in a Ni50Al50 melt: Case analysis of the influence of the process on the kinetics of solidification, Phil. Mag. 95 (2015), pp. 90–111. doi: 10.1080/14786435.2014.984006
  • W.C. Tucker and P.K. Schelling, Thermodiffusion in liquid binary alloys computed from molecular-dynamics simulation and the Green-Kubo formalism, Comp. Mater. Sci. 124 (2016), pp. 54–61. doi: 10.1016/j.commatsci.2016.07.012
  • E.V. Levchenko, A.V. Evteev, T. Ahmed, A. Kromik, R. Kozubski, I.V. Belova, Z.-K. Liu, and G.E. Murch, Influence of the interatomic potential on thermotransport in binary liquid alloys: case study on NiAl, Phil. Mag. 96 (2016), pp. 3054–3074. doi: 10.1080/14786435.2016.1223893
  • P. Williams, Y. Mishin, and J. Hamilton, An embedded-atom potential for the Cu–Ag system, Model. Simul. Mater. Sc. 14 (2006), p. 817–833. doi: 10.1088/0965-0393/14/5/002
  • G. Purja Pun and Y. Mishin, Development of an interatomic potential for the Ni-Al system, Phil. Mag. 89 (2009), pp. 3245–3267. doi: 10.1080/14786430903258184
  • Y. Mishin, M. Mehl, and D. Papaconstantopoulos, Embedded-atom potential for B 2- NiAl, Phys. Rev. B. 65 (2002), p. 9318. doi: 10.1103/PhysRevB.65.224114
  • S. Stüber, D. Holland-Moritz, T. Unruh, and A. Meyer, Ni self-diffusion in refractory Al-Ni melts, Phys. Rev. B. 81 (2010), p. 1719. doi: 10.1103/PhysRevB.81.024204
  • F.K.E. Sondermann and A. Meyer, Thermodiffusion in liquid Al-Ni measured by X-ray radiography, 12th International Conference on Diffusion in Solids and Liquids (DSL-2016), Croatia, 2016.
  • S. De Groot and P. Mazur, Non-equilibrium Thermodynamics, North Holland Publishing Company, Amsterdam, 1962.
  • D.D. Fitts, Nonequilibrium Thermodynamics: A Phenomenological Theory of Irreversible Processes in Fluid Systems, McGraw-Hill, New York, 1962.
  • T. Ahmed, E.V. Levchenko, A.V. Evteev, Z.K. Liu, W.Y. Wang, R. Kozubski, and G.E. Murch, Molecular dynamics prediction of the influence of composition on thermotransport in Ni-Al melts, Diff Found. 12 (2017), pp. 93–110. doi: 10.4028/www.scientific.net/DF.12.93
  • A.R. Allnatt, A.B. Lidiard, Atomic Transport in Solids, Cambridge University Press, Cambridge, 2003
  • R. Howard and A. Lidiard, Matter transport in solids, Rep. Prog. Phys. 27 (1964), pp. 161–240. doi: 10.1088/0034-4885/27/1/305
  • L. Onsager, Reciprocal relations in irreversible processes. I, Phys. Rev. 37 (1931), pp. 405–426. doi: 10.1103/PhysRev.37.405
  • L. Onsager, Reciprocal relations in irreversible processes. II, Phys. Rev, 38 (1931), pp. 2265–2279. doi: 10.1103/PhysRev.38.2265
  • J.R. Manning, Diffusion in a chemical concentration gradient, Phys. Rev. 124 (1961), pp. 470–482. doi: 10.1103/PhysRev.124.470
  • A. Allnatt, Einstein and linear response formulae for the phenomenological coefficients for isothermal matter transport in solids, J. Phys. C. 15 (1982), pp. 5605–5613. doi: 10.1088/0022-3719/15/27/016
  • M. Gillan, A simulation model for hydrogen in palladium. II. Mobility and thermotransport, J. Phys. C. 20 (1987), pp. 521–538. doi: 10.1088/0022-3719/20/4/005
  • P. Sindzingre, G. Ciccotti, C. Massobrio, and D. Frenkel, Partial enthalpies and related quantities in mixtures from computer simulation, Chem. Phys. Lett. 136 (1987), pp. 35–41. doi: 10.1016/0009-2614(87)87294-9
  • P. Sindzingre, C. Massobrio, G. Ciccotti, and D. Frenkel, Calculation of partial enthalpies of an argon-krypton mixture by NPT molecular dynamics, Chem. Phys. 129 (1989), pp. 213–224. doi: 10.1016/0301-0104(89)80007-2
  • A. Bhatia and D. Thornton, Structural aspects of the electrical resistivity of binary alloys, Phys. Rev. B. 2 (1970), pp. 3004–3012. doi: 10.1103/PhysRevB.2.3004
  • X. Hui, H.Z. Fang, G.L. Chen, S.L. Shang, Y. Wang, J.Y. Qin, and Z.K. Liu, Atomic structure of Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass alloy, Acta Mater. 57 (2009), pp. 376–391. doi: 10.1016/j.actamat.2008.09.022
  • W. Wang, H. Fang, S. Shang, H. Zhang, Y. Wang, X. Hui, S. Mathaudhu, and Z.K. Liu, Atomic structure and diffusivity in liquid Al80Ni20 by ab initio molecular dynamics simulations, Phys. B 406 (2011), pp. 3089–3097. doi: 10.1016/j.physb.2011.05.013
  • R. Gao, X. Hui, H.Z. Fang, X.J. Liu, G.L. Chen, and Z.K. Liu, Structural characterization of Mg65Cu25Y10 metallic glass from ab initio molecular dynamics, Comp. Mater. Sci. 44 (2008), pp. 802–806. doi: 10.1016/j.commatsci.2008.05.031
  • Y.N. Zhang, L. Wang, W.M. Wang, and J.K. Zhou, Structural transition of sheared-liquid metal in quenching state, Phys. Lett. A. 355 (2006), pp. 142–147. doi: 10.1016/j.physleta.2006.02.020
  • T. Ahmed, U. Sarder, I.V. Belova, G.E. Murch, Thermodynamic factor in Ni-Al and Cu-Ag liquid alloys from molecular dynamics simulation, Phil. Mag, in preparation, 2018.
  • L. Verlet and J.J. Weis, Equilibrium theory of simple liquids, Phys Rev A. 5 (1972), pp. 939–952. doi: 10.1103/PhysRevA.5.939
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • Sandia National Laboratories. LAMMPS: Large-scale Atomic/Molecular Massively Parallel Simulator (Version 24th of Jan.2013), 2013; software available at http://lammps.sandia.gov/.
  • VMD. software available at http://www.ks.uiuc.edu/Research/vmd/.
  • P. Nash, M. Singleton, and J. Murray, Al-Ni (aluminum-nickel), Phase Diagrams Binary Nickel Alloy. 1 (1991), pp. 3–11.
  • E.V. Levchenko, T. Ahmed, and A.V. Evteev, Composition dependence of diffusion and thermotransport in Ni-Al melts: A step towards molecular dynamics assisted databases, Acta Mater. 136 (2017), pp. 74-89. doi: 10.1016/j.actamat.2017.06.056
  • S.M. Chathoth, Structure and Dynamics of Al and Ni Based Melts Studied by Inelastic Neutron Scattering, Doktorarbeit, Technische Universität München, 2005.
  • N. Jakse and A. Pasturel, Dynamic properties and local order in liquid Al-Ni alloys, Appl. Phys. Lett. 105 (2014), p. 131905. doi: 10.1063/1.4896403
  • S. Stüber, Diffusion dynamics in liquid and undercooled Al-Ni alloys, Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigten Dissertation, Technische Universität München/ Lehrstuhl fur Experimentalphysik IV Physikdepartment E13, 2009.
  • F. Demmel, D. Szubrin, W.-C. Pilgrim, and C. Morkel, Diffusion in liquid aluminium probed by quasielastic neutron scattering, Phys. Rev. B. 84 (2011), p. 1133. doi: 10.1103/PhysRevB.84.014307
  • F. Kargl, H. Weis, T. Unruh, and A, Meyer, Self diffusion in liquid aluminium, J Phys. Conf. Ser. 340 (2012), p. 012077. 01(1–5). doi: 10.1088/1742-6596/340/1/012077
  • N. Jakse and A. Pasturel, Liquid aluminum: atomic diffusion and viscosity from ab initio molecular dynamics, Sci. Rep. 3 (2013), p. 8. doi: 10.1038/srep03135
  • Y. Lü, H. Cheng, and M. Chen, A molecular dynamics examination of the relationship between self-diffusion and viscosity in liquid metals, J. Chem. Phys. 136 (2012), p. 214505. doi: 10.1063/1.4723683
  • I. Belova, T. Ahmed, U. Sarder, A.V. Evteev, E.V. Levchenko, and G.E. Murch, The manning factor for direct exchange and ring diffusion mechanisms, Phil. Mag. 97 (2017), pp. 230–247. doi: 10.1080/14786435.2016.1255368
  • L. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Metall. Mater. Trans. B. 41 (2010), pp. 277–294.
  • L. Darken, Diffusion of carbon in austenite with a discontinuity in composition, Trans. Aime. 180 (1949), p. 53.
  • M.S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. Irreversible processes in fluids, J. Chem. Phys. 22 (1954), pp. 398–413. doi: 10.1063/1.1740082
  • R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Jpn. 12 (1957), pp. 570–586. doi: 10.1143/JPSJ.12.570
  • J. Irving and J.G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics, J Chem. Phys. 18 (1950), pp. 817–829. doi: 10.1063/1.1747782

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.