162
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Interactions between clusters of self-interstitial atoms via a conservative climb in BCC–Fe

, , , &
Pages 2311-2325 | Received 29 Jun 2017, Accepted 22 May 2018, Published online: 21 Jun 2018

References

  • R.E. Stoller, Primary radiation damage formation, in Comprehensive Nuclear Materials, R.J.M. Konings, T.R. Allen, R.E. Stoller, S. Yamanaka eds., Elsevier, Amsterdam, 2012, pp. 293–332.
  • N. Soneda, T.D. de la Rubia, Migration kinetics of the self-interstitial atom and its clusters in BCC Fe. Philos. Mag. 81 (2001), pp. 331–343 doi: 10.1080/01418610108214307
  • N. Anento, A. Serra, and Yu. N. Osetsky, Atomistic study of multimechanism diffusion by self-interstitial defects in α-Fe, modell. Simul. Mater. Sci. Eng. 18 (2010), 025008.
  • Y.N. Osetsky, D.J. Bacon, A. Serra, B.N. Singh, and S.I. Golubov, Stability and mobility of defect clusters and dislocation loops in metals, J. Nucl. Mater. 276 (2000), pp. 65–77. doi: 10.1016/S0022-3115(99)00170-1
  • M.J. Caturla, T.D. de la Rubia, M. Victoria, R.K. Corzine, M.R. James, and G.A. Greene, Multiscale modeling of radiation damage: applications to damage production by GeV proton irradiation of Cu and W, and pulsed irradiation effects in Cu and Fe, J. Nucl. Mater. 296 (2001), pp. 90–100. doi: 10.1016/S0022-3115(01)00569-4
  • K.H. Westmacott, A.C. Roberts, and R.S. Barnes, The growth of dislocation loops during the irradiation of aluminum, Philos. Mag. 84 (1962), pp. 2035–2049. doi: 10.1080/14786436208214472
  • J.A. Turnbull, The coalescence of dislocation loops by self-climb, Philos. Mag. 21 (1970), pp. 83–94.
  • B.L. Eyre, and D.M. Maher, Neutron irradiation damage in molybdenum. part V. Mechanisms of vacancy and interstitial loop growth during post-irradiation annealing, Philos. Mag. 24 (1971), pp. 767–797. doi: 10.1080/14786437108217049
  • V.P. Swart and S. Kritzinger, Prismatic dislocation loop rotation and self-climb phenomena in Al–0.13 wt. % Mg, Philos. Mag. 27 (1973), pp. 689–695.
  • O. Haruyama, H. Kawamoto, H. Yamaguchi, and S. Yoshida, The climbing motion of faulted dislocation loops induced by elastic interaction, Jpn. J. Appl. Phys. 19 (1980), pp. 807–813. doi: 10.1143/JJAP.19.807
  • Z. Yao, M.L. Jenkins, M. Hernandez-Mayoral, and M.A. Kirk, The temperature dependence of heavy-ion damage in iron: A microstructural transition at elevated temperatures, Philos. Mag. 90 (2010), pp. 4623–4634. doi: 10.1080/14786430903430981
  • Y. Idrees, Z. Yao, M.A. Kirk, and M.R. Daymond, In situ study of defect accumulation in zirconium under heavy ion irradiation, J. Nucl. Mater. 433 (2013), pp. 95–107.
  • C. Arevalo, M.J. Caturla, and J.M. Perlado, Influence of self-interstitial mobility on damage accumulation in zirconium under fission irradiation conditions, J. Nucl. Mater. 362 (2007), pp. 293–299. doi: 10.1016/j.jnucmat.2007.01.079
  • F. Kroupa and P.B. Price, ‘Conservative climb’ of a dislocation loop due to its interaction with an edge dislocation, Philos. Mag. 6 (1961), pp. 243–247.
  • F. Kroupa, J. Silcox, and M.J. Whelan, On the annealing of prismatic dislocation loops in aluminum, Philos. Mag. 6 (1961), pp. 971–978.
  • Y. N. Osetsky, A. Serra, and V. Priego, Interactions between mobile dislocation loops in Cu and α–Fe, J. Nucl. Mater. 276 (2000), pp. 202–212. doi: 10.1016/S0022-3115(99)00179-8
  • T.D. Swinburne, K. Arakawa, H. Mori, H. Yasuda, M. Isshiki, K. Miura, M. Uchikoshi, and S.L. Dudarev, Fast, vacancy-free climb of prismatic dislocation loops in bcc metals, Sci. Rep. 6 (2016), 30596.
  • T. Okita, S. Hayakawa, M. Itakura, M. Aichi, S. Fujita, and K. Suzuki, Conservative climb motion of a cluster of self–interstitial atoms toward an edge dislocation in BCC–Fe, Acta Mater. 118 (2016), pp. 342–349. doi: 10.1016/j.actamat.2016.08.003
  • S. Hayakawa, T. Okita, M. Itakura, M. Aichi, and S. Fujita, Behavior of a self-interstitial–atom type dislocation loop in the periphery of an edge dislocation in BCC-Fe, Nucl. Mater. Energy 9 (2016), pp. 592–597. doi: 10.1016/j.nme.2016.08.011
  • H. Trinkaus, B.N. Singh, and A.J.E. Foreman, Mechanisms of decoration of dislocations by small dislocation loops under cascade damage conditions, J. Nucl. Mater. 249 (1997), pp. 91–102. doi: 10.1016/S0022-3115(97)00230-4
  • W.G. Wolfer, T. Okita, D.M. Barnett, Motion and rotation of small glissile dislocation loops in stress fields. Phys. Rev. Lett. 92 (2004), pp. 085507-1–085507-4 doi: 10.1103/PhysRevLett.92.085507
  • T. Okita, N. Sekimura, The elastic interaction between an edge dislocation and a loop in BCC systems. J. Nucl. Mater. 367–370 (2007), pp. 368–371 doi: 10.1016/j.jnucmat.2007.03.127
  • D.T. Gillespie, Monte Carlo simulation of random walks with residence time dependent transition probability rates, J. Comput. Phys. 28 (1978), pp. 395–407. doi: 10.1016/0021-9991(78)90060-8
  • M.I. Mendelev, S. Han, and D.J. Srolovitz, Development of new interatomic potentials appropriate for crystalline and liquid iron, Philos. Mag. 83 (2003), pp. 3977–3994. doi: 10.1080/14786430310001613264
  • F. Kroupa, Dislocation loops, in Theory of Crystal Defects, B. Gruber, ed., Academic Press, New York, 1966, pp. 275–316.
  • H. Trinkaus, B.N. Singh, and A.J.E. Foreman, Segregation of cascade induced interstitial loops at dislocations, J. Nucl. Mater. 251 (1997), pp. 172–187. doi: 10.1016/S0022-3115(97)00246-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.