270
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Local stress analysis of partial dislocation interactions with symmetrical-tilt grain boundaries containing E-structural units

, &
Pages 2345-2366 | Received 27 Mar 2018, Accepted 04 Jun 2018, Published online: 19 Jun 2018

References

  • H. Van Swygenhoven, M. Spaczer, A. Caro, and D. Farkas, Competing plastic deformation mechanisms in nanophase metals, Phys. Rev. B 60 (1999), pp. 22–25. doi: 10.1103/PhysRevB.60.22
  • J.P. Hirth, The influence of grain boundaries on mechanical properties, Metall. Trans. 3 (1972), pp. 3047–3067. doi: 10.1007/BF02661312
  • R. Li and H.B. Chew, Closed and open-ended stacking fault tetrahedra formation along the interfaces of Cu–Al nanolayered metals, Philos. Mag. 95 (2015), pp. 2747–2763. doi: 10.1080/14786435.2015.1077283
  • R. Li and H.B. Chew, Deformation twinning and plastic recovery in Cu/Ag nanolayers under uniaxial tensile straining, Philos. Mag. Lett. 94 (2014), pp. 260–268. doi: 10.1080/09500839.2014.893063
  • R. Li and H.B. Chew, Planar-to-wavy transition of Cu–Ag nanolayered metals: A precursor mechanism to twinning, Philos. Mag. 95 (2015), pp. 1029–1048. doi: 10.1080/14786435.2015.1006290
  • R.W. Armstrong, The influence of polycrystal grain size on several mechanical properties of materials, Metall. Mater. Trans. B 1 (1970), pp. 1169–1176. doi: 10.1007/BF02900227
  • R.W. Armstrong, I. Codd, R.M. Douthwaite, and N.J. Petch, The plastic deformation of polycrystalline aggregates, Philos. Mag. 7 (1962), pp. 45–58. doi: 10.1080/14786436208201857
  • N. Hansen, The effect of grain size and strain on the tensile flow stress of aluminum at room temperature, Acta Metall. 25 (1977), pp. 863–869. doi: 10.1016/0001-6160(77)90171-7
  • E.O. Hall, The deformation and ageing of mild steel: III discussion of results, Proc. Phys. Soc. B 64 (1951), pp. 747–753. doi: 10.1088/0370-1301/64/9/303
  • N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst. 173 (1953), pp. 25–28
  • J. Kacher, B.P. Eftink, B. Cui, and I.M. Robertson, Dislocation interactions with grain boundaries, Curr. Opin. Solid St. Mater. Sci. 18 (2014), pp. 227–243. doi: 10.1016/j.cossms.2014.05.004
  • C.S. Pande and K.P. Cooper, Nanomechanics of Hall–Petch relationship in nanocrystalline materials, Prog. Mater. Sci. 54 (2009), pp. 689–706. doi: 10.1016/j.pmatsci.2009.03.008
  • L.C. Lim and R. Raj, Continuity of slip screw and mixed crystal dislocations across bicrystals of nickel at 573 K, Acta Metall. 33 (1985), pp. 1577–1583. doi: 10.1016/0001-6160(85)90057-4
  • M.A. Meyers, A. Mishra, and D.J. Benson, Mechanical properties of nanocrystalline materials, Prog. Mater. Sci. 51 (2006), pp. 427–556. doi: 10.1016/j.pmatsci.2005.08.003
  • V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, and H. Gleiter, Dislocation processes in the deformation of nanocrystalline aluminium by molecular-dynamics simulation, Nat. Mater. 1 (2002), pp. 45–49. doi: 10.1038/nmat700
  • J. Schiøtz and K.W. Jacobsen, A maximum in the strength of nanocrystalline copper, Science 301 (2003), pp. 1357–1359. doi: 10.1126/science.1086636
  • Y.M. Soifer, A. Verdyan, M. Kazakevich, and E. Rabkin, Nanohardness of copper in the vicinity of grain boundaries, Scripta Mater. 47 (2002), pp. 799–804. doi: 10.1016/S1359-6462(02)00284-1
  • M.G. Wang and A.H.W. Ngan, Indentation strain burst phenomenon induced by grain boundaries in niobium, J. Mater. Res. 19 (2004), pp. 2478–2486. doi: 10.1557/JMR.2004.0316
  • W.A. Soer, K.E. Aifantis, and J.T.M. De Hosson, Incipient plasticity during nanoindentation at grain boundaries in body-centered cubic metals, Acta Mater. 53, (2005), pp. 4665–4676. doi: 10.1016/j.actamat.2005.07.001
  • M.P. Dewald and W.A. Curtin, Multiscale modelling of dislocation/grain boundary interactions. II. Screw dislocations impinging on tilt boundaries in Al, Philos. Mag. 87 (2007), pp. 4615–4641. doi: 10.1080/14786430701297590
  • Y. Cheng, M. Mrovec, and P. Gumbsch, Atomistic simulations of interactions between the 1/2(111) edge dislocation and symmetric tilt grain boundaries in tungsten, Philos. Mag. 88 (2008), pp. 547–560 doi: 10.1080/14786430801894577
  • D.V. Bachurin, D. Weygand, and P. Gumbsch, Dislocation–grain boundary interaction in <111> textured thin metal films, Acta Mater. 58 (2010), pp. 5232–5241. doi: 10.1016/j.actamat.2010.05.037
  • A. Hasnaoui, P.M. Derlet, and H. Van Swygenhoven, Interaction between dislocations and grain boundaries under an indenter – a molecular dynamics simulation, Acta Mater. 52 (2004), pp. 2251–2258. doi: 10.1016/j.actamat.2004.01.018
  • Z. Shen, R.H. Wagoner, and W.A.T. Clark, Dislocation and grain boundary interactions in metals, Acta Metall. 36 (1988), pp. 3231–3242. doi: 10.1016/0001-6160(88)90058-2
  • A. Ma, F. Roters, and D. Raabe, On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling–theory, experiments, and simulations, Acta Mater. 54 (2006), pp. 2181–2194. doi: 10.1016/j.actamat.2006.01.004
  • Z. Shen, R.H. Wagoner, and W.A.T. Clark, Dislocation pile-up and grain boundary interactions in 304 stainless steel, Scripta Metall. 20 (1986), pp. 921–926. doi: 10.1016/0036-9748(86)90467-9
  • T.C. Lee, I. M. Robertson, and H.K. Birnbaum, Prediction of slip transfer mechanisms across grain boundaries, Scripta Metall. (1989), pp. 23, 799–803. doi: 10.1016/0036-9748(89)90534-6
  • D.E. Spearot and M.D. Sangid, Insights on slip transmission at grain boundaries from atomistic simulations, Curr. Opin. Solid St. Mater. Sci. 18 (2014), pp. 188–195. doi: 10.1016/j.cossms.2014.04.001
  • T.C. Lee, I.M. Robertson, and H.K. Birnbaum, TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals, Philos. Mag. A 62 (1990), pp. 131–153. doi: 10.1080/01418619008244340
  • W.A.T. Clark, R.H. Wagoner, Z.Y. Shen, T.C. Lee, I.M. Robertson, and H.K. Birnbaum, On the criteria for slip transmission across interfaces in polycrystals, Scripta Metall. Mater. 26 (1992), pp. 203–206. doi: 10.1016/0956-716X(92)90173-C
  • A. Gemperle, J. Gemperlová, and N. Zárubová, Interaction of slip dislocations with grain boundaries in body-centered cubic bicrystals, Mater. Sci. Eng. A 387–389 (2004), pp. 46–50. doi: 10.1016/j.msea.2004.03.081
  • A. Gemperle, N. Zárubová, and J. Gemperlová, Reactions of slip dislocations with twin boundary in Fe-Si bicrystals, J. Mater. Sci. 40 (2005), pp. 3247–3254. doi: 10.1007/s10853-005-2693-1
  • S. Kondo, T. Mitsuma, N. Shibata, and Y. Ikuhara, Direct observation of individual dislocation interaction processes with grain boundaries, Sci. Adv. 2 (2016), p. e1501926. doi: 10.1126/sciadv.1501926
  • Q. Yin, Z. Wang, R. Mishra, and Z. Xia, Atomic simulations of twist grain boundary structures and deformation behaviors in aluminum, AIP Adv. 7 (2017), p. 015040. doi: 10.1063/1.4975042
  • B.J. Pestman, J.T.M. De Hosson, V. Vitek, and F.W. Schapink, Interaction between lattice dislocations and grain boundaries in FCC and ordered compounds: a computer simulation, Philos. Mag. A 64 (1991), pp. 951–969. doi: 10.1080/01418619108213958
  • J. Wang and A. Misra, An overview of interface-dominated deformation mechanisms in metallic multilayers, Curr. Opin. Solid St. Mater. Sci. 15 (2011), pp. 20–28. doi: 10.1016/j.cossms.2010.09.002
  • M. de Koning, R.J. Kurtz, V.V. Bulatov, C.H. Henager, R.G. Hoagland, W. Cai, and M. Nomura, Modeling of dislocation–grain boundary interactions in FCC metals, J. Nucl. Mater. 323 (2003), pp. 281–289. doi: 10.1016/j.jnucmat.2003.08.008
  • Z. Pan and T.J. Rupert, Damage nucleation from repeated dislocation absorption at a grain boundary, Comp. Mater. Sci. 93 (2014), pp. 206–209. doi: 10.1016/j.commatsci.2014.07.008
  • G.J. Tucker, M.A. Tschopp, and D.L. McDowell, Evolution of structure and free volume in symmetric tilt grain boundaries during dislocation nucleation, Acta Mater. 58 (2010), pp. 6464–6473. doi: 10.1016/j.actamat.2010.08.008
  • A.P. Sutton, R.W. Balluffi. Interfaces in crystalline materials (Monographs on the Physics and Chemistry of Materials), Clarendon Press, Oxford, 1995, pp. 414–423, ISBN-13: 978-0199211067.
  • F.L. VogelJr, Dislocations in low-angle boundaries in germanium, Acta Metall. 3 (1955), pp. 245–248. doi: 10.1016/0001-6160(55)90059-6
  • E. Tochigi, N. Shibata, A. Nakamura, T. Yamamoto, and Y. Ikuhara, Partial dislocation configurations in a low-angle boundary in α-Al2O3, Acta Mater. 56 (2008), pp. 2015–2021. doi: 10.1016/j.actamat.2007.12.041
  • D.G. Brandon, B. Ralph, S.T. Ranganathan, and M.S. Wald, A field ion microscope study of atomic configuration at grain boundaries, Acta Metall. 12 (1964), pp. 813–821. doi: 10.1016/0001-6160(64)90175-0
  • D.G. Brandon, The structure of high-angle grain boundaries, Acta Metall. 14 (1966), pp. 1479–1484. doi: 10.1016/0001-6160(66)90168-4
  • H. Van Swygenhoven, D. Farkas, and A. Caro, Grain-boundary structures in polycrystalline metals at the nanoscale, Phys. Rev. B 62 (2000), pp. 831–838. doi: 10.1103/PhysRevB.62.831
  • A.P. Sutton and V. Vitek, On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries, Philos. Trans. R. Soc. Lond. A, 309 (1983), pp. 1–36. doi: 10.1098/rsta.1983.0020
  • H.F. Fischmeister, Structure and properties of high angle grain boundaries, J. Phys. Coll. 46, C4 (1985), pp. 3–23.
  • M.A. Tschopp, G.J. Tucker, and D.L. McDowell, Structure and free volume of <110> symmetric tilt grain boundaries with the E structural unit, Acta Mater. 55 (2007), pp. 3959–3969. doi: 10.1016/j.actamat.2007.03.012
  • D.E. Spearot, M.A. Tschopp, K.I. Jacob, and D.L. McDowell, Tensile strength of <100> and <110> tilt bicrystal copper interfaces, Acta Mater. 55 (2007), pp. 705–714. doi: 10.1016/j.actamat.2006.08.060
  • R. Li and H.B. Chew, Grain boundary traction signatures: quantitative predictors of dislocation emission, Phys. Rev. Lett. 117 (2016), p. 085502. doi: 10.1103/PhysRevLett.117.085502
  • R. Li and H.B. Chew, Grain boundary traction signatures: quantifying the asymmetrical dislocation emission processes under tension and compression, J. Mech. Phys. Solids 103 (2017), pp. 142–154. doi: 10.1016/j.jmps.2017.03.009
  • S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comp. Phys. 117 (1995), pp. 1–19. doi: 10.1006/jcph.1995.1039
  • J.B. Adams, S.M. Foiles, and W.G. Wolfer, Self-diffusion and impurity diffusion of fee metals using the five-frequency model and the embedded atom method, J. Mater. Res. 4 (1989), pp. 102–112. doi: 10.1557/JMR.1989.0102
  • M.A. Tschopp, and D.L. McDowell, Structures and energies of Σ3 asymmetric tilt grain boundaries in copper and aluminum, Philos. Mag. 87 (2007), pp. 3147–3173. doi: 10.1080/14786430701255895
  • D.L. Olmsted, S.M. Foiles, and E.A. Holm, Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy, Acta Mater. 57 (2009), pp. 3694–3703. doi: 10.1016/j.actamat.2009.04.007
  • M.D. Sangid, H. Sehitoglu, H.J. Maier, and T. Niendorf, Grain boundary characterization and energetics of superalloys, Mater. Sci. Eng. A 527 (2010), pp. 7115–7125. doi: 10.1016/j.msea.2010.07.062
  • Y. Fan, Y.N. Osetskiy, S. Yip and B. Yildiz, Mapping strain rate dependence of dislocation-defect interactions by atomistic simulations, Proc. Natl. Acad. Sci. 110 (2013), pp. 17756–17761. doi: 10.1073/pnas.1310036110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.