530
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Line tension of a dislocation moving through an anisotropic crystal

&
Pages 2397-2424 | Received 13 Dec 2017, Accepted 23 May 2018, Published online: 04 Jul 2018

References

  • R.J. Clifton, Dynamic plasticity, J. Appl. Mech. 50 (1983), pp. 941–952. doi: 10.1115/1.3167207
  • R.J. Clifton, Response of materials under dynamic loading, Int. J. Solids Struct. 37 (2000), pp. 105–113. doi: 10.1016/S0020-7683(99)00082-7
  • L.E. Murr, M.A. Meyers, C.S. Niou, Y.J. Chen, S. Pappu, and C. Kennedy, Shock-induced deformation twinning in tantalum, Acta Mater. 45 (1997), pp. 157–175. doi: 10.1016/S1359-6454(96)00145-0
  • D.L. Olmsted, L.G. Hector Jr., W.A. Curtin, and R.J. Clifton, Atomistic simulations of dislocation mobility in Al, Ni and Al/Mg alloys, Model. Simul. Mater. Sci. Eng. 13 (2005), p. 371. doi: 10.1088/0965-0393/13/3/007
  • N.P. Daphalapurkar, J.W. Wilkerson, T.W. Wright, and K.T. Ramesh, Kinetics of a fast moving twin boundary in nickel, Acta Mater. 68 (2014), pp. 82–92. doi: 10.1016/j.actamat.2014.01.010
  • J. Marian and A. Caro, Moving dislocations in disordered alloys: Connecting continuum and discrete models with atomistic simulations, Phys. Rev. B74 (2006), p. 024113.
  • E. Oren, E. Yahel, and G. Makov, Dislocation kinematics: A molecular dynamics study in Cu, Model. Simul. Mater. Sci. Eng. 25 (2017), p. 025002. doi: 10.1088/1361-651X/aa52a7
  • Z.Q. Wang and I.J. Beyerlein, Stress orientation and relativistic effects on the separation of moving screw dislocations, Phys. Rev. B77 (2008), p. 184112.
  • M.R. Gilbert, S. Queyreau, and J. Marian, Stress and temperature dependence of screw dislocation mobility in α-Fe by molecular dynamics, Phys. Rev. B84 (2011), p. 174103.
  • S. Queyreau, J. Marian, M.R. Gilbert, and B.D. Wirth, Edge dislocation mobilities in bcc Fe obtained by molecular dynamics, Phys. Rev. B84 (2011), p. 064106.
  • V. Nosenko, S. Zhdanov, and G. Morfill, Supersonic dislocations observed in a plasma crystal, Phys. Rev. Lett. 99 (2007), p. 025002. doi: 10.1103/PhysRevLett.99.025002
  • J. Weertman, High velocity dislocations, in Response of Metals to High Velocity Deformation, P.G. Shewmon and V.F. Zackay, eds., Metallurgical Society Conferences Vol. 9, Interscience Publishers, New York, 1961, pp. 205–247, proceedings of a technical conference, Estes Park, Colorado, 1960.
  • J. Weertman and J.R. Weertman, Moving dislocations, in Moving Dislocations, F.R.N. Nabarro, ed., Dislocations in Solids Vol. 3, North Holland Pub. Co., Amsterdam, 1980, pp. 1–59.
  • D.J. Bacon, D.M. Barnett, and R.O. Scattergood, Anisotropic continuum theory of lattice defects, Prog. Mater. Sci. 23 (1980), p. 51–262. doi: 10.1016/0079-6425(80)90007-9
  • J.P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., Wiley, New York, 1982.
  • W. Kingston, Physics of Powder Metallurgy: A Symposium, McGraw-Hill, New York, NY, 1951.
  • G. DeWit and J.S. Koehler, Interaction of dislocations with an applied stress in anisotropic crystals, Phys. Rev. 116 (1959), p. 1113. doi: 10.1103/PhysRev.116.1113
  • D.N. Blaschke, E. Mottola, and D.L. Preston, On the velocity dependence of the dislocation drag coefficient from phonon wind, Tech. Rep. LA-UR-16-24559, Los Alamos Natl. Lab., 2018.
  • V.I. Alshits, The phonon-dislocation interaction and its role in dislocation dragging and thermal resistivity, in Elastic Strain Fields and Dislocation Mobility, V.L. Indenbom and J. Lothe, eds., Modern Problems in Condensed Matter Sciences Vol. 31, Elsevier, Amsterdam, 1992, pp. 625–697.
  • X. Markenscoff and S. Huang, The energetics of dislocations accelerating and decelerating through the shear-wave speed barrier, Appl. Phys. Lett. 94 (2009), p. 021906. doi: 10.1063/1.3072351
  • D.M. Barnett, R.J. Asaro, S.D. Gavazza, D.J. Bacon, and R.O. Scattergood, The effects of elastic anisotropy on dislocation line tension in metals, J. Phys. F: Met. Phys. 2 (1972), p. 854. doi: 10.1088/0305-4608/2/5/009
  • M. Sakamoto, High-velocity dislocations: Effective mass, effective line tension and multiplication, Phil. Mag. A63 (1991), pp. 1241–1248. doi: 10.1080/01418619108205580
  • A.N. Stroh, Steady state problems in anisotropic elasticity, J. Math. Phys. 41 (1962), pp. 77–103. doi: 10.1002/sapm196241177
  • W.M. Haynes, CRC Handbook of Chemistry and Physics, 97th ed., CRC Press, 2017.
  • J.F. Thomas, Third-order elastic constants of aluminum, Phys. Rev. 175 (1968), pp. 955–962. Erratum-ibid 181 (1969) 1370. doi: 10.1103/PhysRev.175.955
  • S.G. Epstein and O.N. Carlson, The elastic constants of nickel-copper alloy single crystals, Acta Metal. 13 (1965), pp. 487–491. doi: 10.1016/0001-6160(65)90098-2
  • J. Leese and A.E. Lord, Elastic stiffness coefficients of single-crystal iron from room temperature to 500C, J. Appl. Phys. 39 (1968), pp. 3986–3988. doi: 10.1063/1.1656884
  • D.I. Bolef, Elastic constants of single crystals of the bcc transition elements V, Nb, and Ta, J. Appl. Phys. 32 (1961), pp. 100–105. doi: 10.1063/1.1735933
  • N. Soga, Comparison of measured and predicted bulk moduli of tantalum and tungsten at high temperatures, J. Appl. Phys. 37 (1966), pp. 3416–3420. doi: 10.1063/1.1708873
  • R. Lowrie and A.M. Gonas, Single-crystal elastic properties of tungsten from 24 to 1800C, J. Appl. Phys. 38 (1967), pp. 4505–4509. doi: 10.1063/1.1709158
  • D.M. Barnett and J. Lothe, Synthesis of the sextic and the integral formalism for dislocations, Greens functions, and surface waves in anisotropic elastic solids, Phys. Norv. 7 (1973), p. 13.
  • R.J. Asaro, J.P. Hirth, D.M. Barnett, and J. Lothe, A further synthesis of sextic and integral theories for dislocations and line forces in anisotropic media, Phys. Stat. Sol. (B) 60 (1973), pp. 261–271. doi: 10.1002/pssb.2220600129
  • T. Mura, Micromechanics of Defects in Solids, 2nd ed., Mechanics of Elastic and Inelastic Solids Vol. 3, Springer, Dordrecht, 1987.
  • W. Püschl, G. Schoeck, and H.O.K. Kirchner, The line tension of dislocations in anisotropic media, Phil. Mag. A56 (1987), pp. 553–563. doi: 10.1080/01418618708214405
  • E. Clouet, Dislocation core field. I. Modeling in anisotropic linear elasticity theory, Phys. Rev. B84 (2011), p. 224111.
  • E. Clouet, L. Ventelon, and F. Willaime, Dislocation core field. II. Screw dislocation in iron, Phys. Rev. B84 (2011), p. 224107.
  • B. Lüthi, L. Ventelon, C. Elsässer, D. Rodney, and F. Willaime, First principles investigation of carbon-screw dislocation interactions in body-centered cubic metals, Model. Simul. Mater. Sci. Eng. 25 (2017), p. 084001. doi: 10.1088/1361-651X/aa88eb
  • D. Rodney, L. Ventelon, E. Clouet, L. Pizzagalli, and F. Willaime, Ab initio modeling of dislocation core properties in metals and semiconductors, Acta Mater. 124 (2017), pp. 633–659. doi: 10.1016/j.actamat.2016.09.049
  • J.D. Eshelby, Uniformly moving dislocations, Proc. Phys. Soc. A62 (1949), p. 307. doi: 10.1088/0370-1298/62/5/307
  • J. Lothe, Dislocation bends in anisotropic media, Phil. Mag. 15 (1967), pp. 353–362. doi: 10.1080/14786436708227707
  • J.D. Eshelby, Supersonic dislocations and dislocations in dispersive media, Proc. Phys. Soc. B69 (1956), p. 1013. doi: 10.1088/0370-1301/69/10/307
  • Y.P. Pellegrini, Dynamic Peierls-Nabarro equations for elastically isotropic crystals, Phys. Rev. B81 (2010), p. 024101.
  • D.M. Barnett and J.A. Zimmerman, Nonradiating dislocations in uniform supersonic motion in anisotropic linear elastic solids, in Integral Methods in Science and Engineering, C. Constanda, P. Schiavone, and A. Mioduchowski, eds., Birkhäuser, 2002, pp. 45–50, Proceedings of the 6th International Conference on Integral Methods in Science and Engineering, Banff, Canada, 2000.
  • Y.P. Pellegrini, Causal Stroh formalism for uniformly-moving dislocations in anisotropic media: Somigliana dislocations and Mach cones, Wave Motion 68 (2017), pp. 128–148. doi: 10.1016/j.wavemoti.2016.09.006
  • R.J. Beltz, T.L. Davis, and K. Malén, Some unifying relations for moving dislocations, Phys. Stat. Sol. (B) 26 (1968), pp. 621–637. doi: 10.1002/pssb.19680260227
  • K. Malén, Stability and some characteristics of uniformly moving dislocations, in Fundamental Aspects of Dislocation Theory, J.A. Simmons, R. De Wit, and R. Bullough, eds., NBS Special Publication Vol. 317, Nat. Bur. Stand. (U.S.), 1970. Conference proceedings, 1969.
  • L.J. Teutonico, Uniformly moving dislocations of arbitrary orientation in anisotropic media, Phys. Rev. 127 (1962), pp. 413–418. doi: 10.1103/PhysRev.127.413

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.