90
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Nickel-induced magnetic behaviour of nano-structured α-Fe2O3, synthesised by facile wet chemical route

, , , , , & show all
Pages 2425-2439 | Received 10 Dec 2017, Accepted 31 May 2018, Published online: 29 Jun 2018

References

  • C.Z. Wu, P. Yin, X. Zhu, C.Z. OuYang, and Y. Xie, Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effect on their applications in magnetism, lithium ion battery, and gas sensor, J. Phys. Chem. B 110 (2006), pp. 17806–17812. doi: 10.1021/jp0633906
  • T. Ren, P. He, W. Niu, Y. Wu, L. Ai, and X. Gou, Synthesis of α-Fe2O3 nanofiber for applications in removal and recovery of Cr (VI) from waste water, Environ. Sci. Pollut. Res. 20 (2013), pp. 155–162. doi: 10.1007/s11356-012-0842-z
  • X.-L. Cheng, J.-S. Jiang, C.-Y. Jin, C.-C. Lin, Y. Zeng, and Q.-H. Zhang, Cauliflower-like α-Fe2O3 microstructures: Toluene–water interface-assisted synthesis, characterization, and applications in waste water treatment and visible-light photocatalysis, Chem. Eng. J. 236 (2014), pp. 139–148. doi: 10.1016/j.cej.2013.09.089
  • Y. Hou, D. Wang, X.H. Yang, W.Q. Fang, B. Zhang, H.F. Wang, G.Z. Lu, P. Hu, H.J. Zhao, and H.G. Yang, Rational screening low cost-counter electrodes for dye sensitized solar cell, Nat. Commun. 4 (2013), pp. 1584 (1–8). doi: 10.1038/ncomms2547
  • H. Niu, S. Zhang, Q. Ma, S. Qin, L. Wan, J. Xu, and S. Miao, Dye sensitized solar cells based on flower shaped α-Fe2O3 as a photoanode and reduced graphene oxide-polyanilene composite as a counter electrode, RSC Adv. 3 (2013), pp. 17228–17235. doi: 10.1039/c3ra42214c
  • L.P. Zhu, N.C. Bing, L.L. Wang, H.Y. Jin, G.H. Liao, and L.J. Wang, Self-assembled 3D porous flower-like α-Fe2O3 hierarchical nanostructure: Synthesis, growth mechanism and their mechanism in photocatalysis, Dalton Trans. 41 (2012), pp. 2959–2965. doi: 10.1039/c2dt11822j
  • X. Liu, X. Liu, G. Li, T. Zhang, and W.F. Zhang, Enhancement of photogenerated charges separation in α-Fe2O3 modified by Zn2SnO4, J. Phys. D: Appl. Phys. 42 (2009), pp. 245405 (1–5). doi: 10.1088/0022-3727/42/24/245405
  • S.S. Shinde, R.A. Bansode, C.H. Bhosale, and K.Y. Rajpure, Physical properties of hematite α-Fe2O3 thin film: Applications to photoelectrochemical solar cells, J. Semicond. 32 (2011), pp. 013001 (1–8). doi: 10.1088/1674-4926/32/1/013001
  • Y. Jiao, Y. Liu, F. Qu, and X. Wu, Dendritic α-Fe2O3 hierarchical architectures for visible light driven photocatalysts, Cryst. Eng. Commun. 16 (2014), pp. 575–580. doi: 10.1039/C3CE41994K
  • S.G. Hosseini and E. Ayoman, Synthesis of α-Fe2O3 nanoparticles by dry high-energy ball-milling method and investigation of their catalytic activity, J. Therm. Anal. Calorim. 128 (2017), pp. 915–924. doi: 10.1007/s10973-016-5969-6
  • C. Wang, Y. Cui, and K. Tang, One pot synthesis of α-Fe2O3 nanospheres by solvothermal method, Nanoscale Res. Lett. 8 (2013), pp. 213 (1–4). doi: 10.1186/1556-276X-8-213
  • H.M. Torres Galvis, J.H. Bitter, C.B. Khare, M. Ruitenbeek, A.I. Dugulan, and K.P. de Jong, Supported iron nanoparticles as catalyst for sustainable production of lower olefins, Science 335 (2012), pp. 835–838. doi: 10.1126/science.1215614
  • S. Mochizuki, Electrical conductivity of α-Fe2O3, Phys. Stat. Sol. A 41 (1977), pp. 591–594. doi: 10.1002/pssa.2210410232
  • J.A. Glasscock, P.R.F. Barnes, I.C. Plumb, A. Bendavid, and P.J. Martin, Structural, optical and electrical properties of undoped polycrystalline hematite thin films produced using filtered arc deposition, Thin Solid Films 516 (2008), pp. 1716–1724. doi: 10.1016/j.tsf.2007.05.020
  • J. Kocher, A. Kumar, A. Kumar, S. Priya, and J. Kumar., Nickel-induced structural, optical magnetic and electrical behaviour of α-Fe2O3, Phys. Stat. Sol. B 251 (2014), pp. 1552–1557. doi: 10.1002/pssb.201451183
  • C. Luna, V. Vega, V.M. Prida, and R. Mendoza-Reséndez, Morin transition in hematite nanocrystals self-assembled into 3-dimensional structures, J. Nanosci. Nanotechnol. 12 (2012), pp. 7571–7576. doi: 10.1166/jnn.2012.6533
  • J. Tuček, P. Tuček, J. Čuda, J. Filip, J. Pechoušek, L. Machala, and R. Zbořil, Iron(III) oxide polymorphs and their manifestations in in-field 57Fe Mössbauer spectra, AIP Conf. Proc. 1489 (2012), pp. 56–74. doi: 10.1063/1.4759474
  • J. Tuček, L. Machala, J. Frydrych, R. Zbořil, Mossbauer spectroscopy in study of nanocrystalline iron oxides from thermal processes, in Mössbauer Spectroscopy: Applications in Chemistry, Biology, and Nanotechnology, V.K. Sharma, G. Klingelhofer, and T. Nishida, eds., John Wiley and Sons, New Jersey, USA, 2013, pp. 351–392.
  • D. Zhu, J. Zhang, J. Song, H. Wang, Z. Yu, Y. Shen, and A. Xie, Efficient one pot synthesis of hierarchical flower-like α-Fe2O3 hollow spheres with excellent absorption performance for water treatment, Appl. Surf. Sci. 284 (2013), pp. 855–861. doi: 10.1016/j.apsusc.2013.08.022
  • F. Dumitrache, I. Morjan, C. Fleaca, A. Badoi, G. Manda, S. Pop, D.S. Marta, G. Huminic, A. Huminic, L. Vekas, C. Daia, O. Marinica, C. Luculescu, and A.M. Niculescu, Highly magnetic α-Fe2O3 nanoparticles synthesized by laser pyrolysis used for biological and heat transfer applications, Appl. Surf. Sci. 336 (2015), pp. 297–303. doi: 10.1016/j.apsusc.2014.12.098
  • X. Su, C. Yu, and C. Qiang, Synthesis of α-Fe2O3 nanobelts and nano flakes by thermal oxidation and study to their magnetic properties, Appl. Surf. Sci. 257 (2011), pp. 9014–9018. doi: 10.1016/j.apsusc.2011.05.091
  • M. Tadic, M. Panjan, V. Damnjanovic, and I. Milosevic, Magnetic properties of hematite (α-Fe2O3) nanoparticles prepared by hydrothermal synthesis method, Appl. Surf. Sci. 320 (2014), pp.183–187. doi: 10.1016/j.apsusc.2014.08.193
  • Y. Haung, W. Chen, S. Zhang, Z. Kuang, D. Ao, N.R. Alkurd, W. Zhau, W. Liu, W. Shen, and Z. Li, A high performance hydrogen sulphide gas sensor based on porous α-Fe2O3 operates room temperature, Appl. Surf. Sci. 351 (2015), pp.1025–1033. doi: 10.1016/j.apsusc.2015.06.053
  • C. Saragovi, J. Arpe, E. Sileo, R. Zysler, L.C. Sanchez, and C.A. Barrero, Changes in the structural and magnetic properties of Ni-substituted hematite prepared from metal oxinates, Phys. Chem. Miner. 31 (2004), pp. 625–632. doi: 10.1007/s00269-004-0422-y
  • M. Imran, S. Riaz, N.Z. Nayani, and S. Naseem, Study of magnetic and dielectric behaviour of Ni doped α-Fe2O3 nanopowder, The 2016 World Congress on Advances in Civil, Environmental, and Materials Research, Jeju Island, August 28–September 1, 2016, pp. 1–9.
  • J. Pechousek, D. Jancik, J. Frydrych, J. Navarik, and P. Novak, Setup of Mössbauer spectrometers at RCPTM, in Mössbauer Spectroscopy in Materials Science, J. Tucek and L. Machala, eds., AIP Conference Proceedings, Olomouc, Czech Republic, Vol. 1489, 2012, pp. 186–193.
  • J. Pechousek, R. Prochazka, D. Jancik, M. Mashlan, and J. Frydrych, Universal Lab VIEW-powered Mössbauer spectrometer based on the USB, PCI or PXI devices, J. Phys.: Conf. Ser. 217 (2010), pp. 012006 (1–4).
  • M.K. Fayek, F.M. Sayedahmed, S.S Ata-Allah, and S.M. Ismail, Hyperfine and electrical properties of nickel–chromium ferrites, in 2nd Conference on Nuclear and Particle Physics, Cairo-Egypt, November 13–17, 1999, pp. 571–580.
  • M.H. Mahmoud, A.M. Elshahawy, S.A. Makhlouf, and H.H. Hamdeh, Mossbauer and magnetization studies of nickel ferrite nanoparticles synthesized by the microwave combustion method, J. Magn. Magn. Mater. 343 (2013), pp. 21–26. doi: 10.1016/j.jmmm.2013.04.064
  • M.A. Gabal, Non-isothermal decomposition NiC2O4–FeC2O4 mixture aiming at the production of NiFe2O4, J. Phys. Chem. Solids 64 (2003), pp. 1375–1385. doi: 10.1016/S0022-3697(03)00163-X
  • H.M. Lu and X.K. Meng, Morin temperature and Neel temperature of hematite nanocrystals, J. Phys. Chem. C 114 (2010), pp. 21291–21295. doi: 10.1021/jp108703b
  • P. Sivakumar, R. Ramesh, A. Ramanand, S. Ponnusamy, and C. Muthamizhchelvan, Synthesis and characterization of NiFe2O4 nanoparticles and nanorods, J. Alloys Compd. 563 (2013), pp. 6–11. doi: 10.1016/j.jallcom.2013.02.077
  • V. Šepelák, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, S.J. Campbell, and K.D. Becker, Nanocrystalline nickel ferrite, NiFe2O4: Mechanosynthesis, nonequilibrium cation distribution, canted spin arrangement, and magnetic behaviour, J. Phys. Chem. C 111 (2007), pp. 5026–5033. doi: 10.1021/jp067620s

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.