150
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

The effect of severe plastic deformation and annealing conditions on mechanical properties and restoration phenomena in an ultrafine-grains Fe-28.5%Ni steel

ORCID Icon, ORCID Icon &
Pages 2457-2480 | Received 07 Nov 2017, Accepted 24 May 2018, Published online: 04 Jul 2018

References

  • R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zechetbauer, and Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation, JOM. 58 (2006), pp. 33–39. doi: 10.1007/s11837-006-0213-7
  • R. Valiev, Nanostructuring of metals by severe plastic deformation for advanced properties, Nat. Mater. 3 (2004), pp. 511–516. doi: 10.1038/nmat1180
  • R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov, Bulk nanostructured materials from severe plastic deformation, Prog. Mater. Sci. 45 (2000), pp. 103–189. doi: 10.1016/S0079-6425(99)00007-9
  • A. Shibata, H. Jafarian, and N. Tsuji, Microstructure and crystallographic features of martensite transformed from ultrafine-grained austenite in Fe-24Ni-0.3 C alloy, Mater. Trans. 53 (2012), pp. 81–86. doi: 10.2320/matertrans.MD201121
  • H. Jafarian, J. Habibi-Livar, and S.H. Razavi, Microstructure evolution and mechanical properties in ultrafine grained Al/TiC composite fabricated by accumulative roll bonding, Compos. Part B Eng. 77 (2015), pp. 84–92. doi: 10.1016/j.compositesb.2015.03.009
  • E. Borhani, H. Jafarian, D. Terada, H. Adachi, and N. Tsuji, Microstructural evolution during ARB process of Al-0.2 mass% Sc alloy containing Al3Sc precipitates in initial structures, Mater. Trans. 53 (2012), pp. 72–80. doi: 10.2320/matertrans.MD201125
  • Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai, Novel ultra-high straining process for bulk materials – development of the accumulative roll-bonding (ARB) process, Acta Mater. 47 (1999), pp. 579–583. doi: 10.1016/S1359-6454(98)00365-6
  • Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong, Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) process, Scr. Mater. 39 (1998), pp. 1221–1227. doi: 10.1016/S1359-6462(98)00302-9
  • R.Z. Valiev and T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement, Prog. Mater. Sci. 51 (2006), pp. 881–981. doi: 10.1016/j.pmatsci.2006.02.003
  • A.P. Zhilyaev and T.G. Langdon, Using high-pressure torsion for metal processing: fundamentals and applications, Prog. Mater. Sci. 53 (2008), pp. 893–979. doi: 10.1016/j.pmatsci.2008.03.002
  • Y. Beygelzimer, V. Varyukhin, S. Synkov, and D. Orlov, Useful properties of twist extrusion, Mater. Sci. Eng. A. 503 (2009), pp. 14–17. doi: 10.1016/j.msea.2007.12.055
  • A. Hajalilou, A. Kianvash, H. Lavvafi, and K. Shameli, Nanostructured soft magnetic materials synthesized via mechanical alloying: a review, J. Mater. Sci: Mater. Electron. 29 (2) (2018), pp. 1690–1717.
  • H. Kitahara, N. Tsuji, and Y. Minamino, Martensite transformation from ultrafine grained austenite in Fe–28.5 at.% Ni, Mat. Sci. and Eng. A, 438–440 (2006), pp. 233–236. doi: 10.1016/j.msea.2006.02.082
  • E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scr. Mater. 49 (2003), pp. 663–668. doi: 10.1016/S1359-6462(03)00396-8
  • S.H. Mousavi Anijdan and S. Yue, The effect of cooling rate, and cool deformation through strain induced transformation, on microstructural evolution and mechanical properties of microalloyed steels, Metallurgical Mat. Trans. A, 43, (2012), pp. 1140–1162. doi: 10.1007/s11661-011-0958-7
  • S.H. Mousavi Anijdan, D. Sediako, and S. Yue, Optimization of flow stress in cool deformed Nb-microalloyed steel by combining strain induced transformation of retained austenite, cooling rate and heat treatment, Acta Mater, 60 (2012), pp. 1221–1229. doi: 10.1016/j.actamat.2011.11.019
  • C.-S. Yoo, Y.-M. Park, Y.-S. Jung, and Y.-K. Lee, Effect of grain size on transformation-induced plasticity in an ultrafine-grained metastable austenitic steel, Scr. Mater. 59 (2008), pp. 71–74. doi: 10.1016/j.scriptamat.2008.02.024
  • C.X. Huang, G. Yang, C. Wang, Z.F. Zhang, and S.D. Wu, Mechanical behaviors of ultrafine-grained 301 austenitic stainless steel produced by equal-channel angular pressing, Metall Mater Trans A. 42 (2011), pp. 2061–2071. doi: 10.1007/s11661-010-0575-x
  • H.R. Jafarian, S.H. Mousavi Anijdan, A.R. Eivani, N. Kim, A comprehensive study of microstructure development and its corresponding tensile properties in nano/ultrafine grained metastable austenitic steel during accumulative roll bonding (ARB). Mat. Sci. and Eng. A 703 (2017), pp. 196–204. doi: 10.1016/j.msea.2017.07.050
  • H. Lavvafi, M.E. Lewandowski, D. Schwam, and J.J. Lewandowski, Effects of surface laser treatments on microstructure, tension, and fatigue behavior of AISI 316LVM biomedical wires, Mat. Sci. and Eng., A 688 (2017), pp. 101–113. doi: 10.1016/j.msea.2017.01.083
  • S.H. Mousavi Anijdan, H.R. Jafarian, and A. Bahrami, Microstructural characteristics of nano-structured Fe-28.5Ni steel by means of severe plastic deformation, 7th International Conference on Nanomaterials by Severe Plastic Deformation, IOP Conf. Series: Materials Science and Engineering 194 (2017), pp. 1–6.
  • G. Cacciamani, J. De Keyzer, R. Ferro, U.E. Klotz, J. Lacaze, and P. Wollants, Critical evaluation of the FeeNi, FeeTi and FeeNieTi alloy systems, Intermetallics, 14 (2006), pp. 1312–1325. doi: 10.1016/j.intermet.2005.11.028
  • P. S. Bate, R. D. Knutsen, I. Brough, and F. J. Humphreys, The characterization of low-angle boundaries by EBSD, J Microsc. 220 (2005), pp. 36–46. doi: 10.1111/j.1365-2818.2005.01513.x
  • H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic features of lath martensite in low-carbon steel, Acta Mater, 54 (2006), pp. 1279–1288. doi: 10.1016/j.actamat.2005.11.001
  • N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino, Strength and ductility of ultrafine grained aluminum and iron produced by ARB and annealing, Scr. Mater. 47 (2002), pp. 893–899. doi: 10.1016/S1359-6462(02)00282-8
  • D. Hughes and N. Hansen, High angle boundaries formed by grain subdivision mechanisms, Acta Mater. 45 (1997), pp. 3871–3886. doi: 10.1016/S1359-6454(97)00027-X
  • G. Krauss, Fine structure of austenite produced by the reverse martensitic transformation, Acta Metall. 11 (1963), pp. 499–509. doi: 10.1016/0001-6160(63)90085-3
  • A.D. Schino, I. Salvatori, and J.M. Kenny, Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel, J. Mater. Sci. 37 (2002), pp. 4561–4565. doi: 10.1023/A:1020631912685
  • M. Umemoto and W.S. Owen, Effects of austenitizing temperature and austenite grain size on the formation of athermal martensite in an iron-nickel and an iron-nickel-carbon alloy, Metall. Trans. 5 (1974), pp. 2041–2046. doi: 10.1007/BF02644497
  • H. Jafarian, Characteristics of nano/ultrafine-grained austenitic TRIP steel fabricated by accumulative roll bonding and subsequent annealing, Mater Charact, 114 (2016), pp. 88–96. doi: 10.1016/j.matchar.2016.02.012
  • S. Roy, B.R. Nataraj, S. Suwas, S. Kumar, and K. Chattopadhyay, Accumulative roll bonding of aluminum alloys 2219/5086 laminates: microstructural evolution and tensile properties, Mater Des, 36 (2012), pp. 529–539. doi: 10.1016/j.matdes.2011.11.015
  • S. Tamimi, M. Ketabchi, and N. Parvin, Microstructural evolution and mechanical properties of accumulative roll bonded interstitial free steel, Mater Des 30 (2009) pp. 2556–2562. doi: 10.1016/j.matdes.2008.09.039
  • Y. Zhao, Y. Zhu, and E.J. Lavernia, Strategies for improving tensile ductility of bulk nanostructured materials, Adv Eng Mater, 12 (2010), pp. 769–778. doi: 10.1002/adem.200900335
  • J.H. Hollomon, Tensile deformation, AIME TRANS. 12 (1945), pp. 1–22.
  • W.F. Hosford, R.M. Caddell, Metal Forming: Mechanics and Metallurgy. 4th ed. Cambridge University Press, New York, 2011.
  • R.J. Asaro and A. Needleman, Overview no. 42 texture development and strain hardening in rate dependent polycrystals, Acta Metall. 33 (1985) 923–953. doi: 10.1016/0001-6160(85)90188-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.