291
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Theoretical calculation of surface tension and its temperature coefficient associated with liquid Cu–Ti alloys

& ORCID Icon
Pages 2529-2542 | Received 08 Mar 2018, Accepted 08 Jun 2018, Published online: 04 Jul 2018

References

  • N. Eustathopoulos, N. Sobczak, A. Passerone, and K. Nogi, Measurement of contact angle and work of adhesion at high temperature, J. Mater. Sci. 40 (2005), pp. 2271–2280. doi: 10.1007/s10853-005-1945-4
  • J. Butler, The thermodynamics of the surfaces of solutions, Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character 135 (1932), pp. 348–375.
  • A. Bhatia and R. Singh, Thermodynamic properties of compound forming molten alloys in a weak interaction approximation, Phys. Chem. Liq: an Int. J. 11 (1982), pp. 343–351. doi: 10.1080/00319108208080755
  • E. Guggenheim, Mixtures, Oxford University Press, Oxford, 1952.
  • R. Speiser, D. Poirier, and K. Yeum, Surface tension of binary liquid alloys, Scripta. Metall. Mater. 21 (1987), pp. 687–692. doi: 10.1016/0036-9748(87)90385-1
  • K. Yeum, R. Speiser, and D. Poirier, Estimation of the surface tensions of binary liquid alloys, Metall. Trans. B. 20 (1989), pp. 693–703. doi: 10.1007/BF02655927
  • R. Singh, Short-range order and concentration fluctuations in binary molten alloys, Can J Phys. 65 (1987), pp. 309–325. doi: 10.1139/p87-038
  • A. Bhatia and R. Singh, Short range order and concentration fluctuations in regular and compound forming molten alloys, Phys. Chem. Liq.: an International Journal. 11 (1982), pp. 285–313. doi: 10.1080/00319108208080752
  • R. Novakovic, E. Ricci, D. Giuranno, and A. Passerone, Surface and transport properties of Ag–Cu liquid alloys, Surf Sci. 576 (2005), pp. 175–187. doi: 10.1016/j.susc.2004.12.009
  • R.N. Singh and F. Sommer, Simple model for demixing binary liquid alloys, Z Metallkd. 83 (1992), pp. 533–540.
  • F. Sommer and R. Singh, Temperature dependence of the thermodynamic functions for demixing liquid binary alloys, Z. Metallkd. 85 (1994), pp. 621–624.
  • J. Li, L. Coudurier, and N. Eustathopoulos, Work of adhesion and contact-angle isotherm of binary alloys on ionocovalent oxides, J. Mater. Sci. 24 (1989), pp. 1109–1116. doi: 10.1007/BF01148806
  • J. Miyazaki, J. Barker, and G. Pound, A new Monte Carlo method for calculating surface tension, J. Chem. Phys. 64 (1976), pp. 3364–3369. doi: 10.1063/1.432627
  • J.K. Lee, J. Barker, and G. Pound, Surface structure and surface tension: perturbation theory and Monte Carlo calculation, J Chem. Phys. 60 (1974), pp. 1976–1980. doi: 10.1063/1.1681303
  • L. Prasad, R. Singh, V. Singh, and G. Singh, Correlation between bulk and surface properties of AgSn liquid alloys, J Phys. Chem. B. 102 (1998), pp. 921–926. doi: 10.1021/jp971042l
  • S. Amore, J. Brillo, I. Egry, and R. Novakovic, Surface tension of liquid Cu–Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling, Appl. Surf. Sci. 257 (2011), pp. 7739–7745. doi: 10.1016/j.apsusc.2011.04.019
  • R. Novakovic, E. Ricci, M. Muolo, D. Giuranno, and A. Passerone, On the application of modelling to study the surface and interfacial phenomena in liquid alloy–ceramic substrate systems, Intermetallics. 11 (2003), pp. 1301–1311. doi: 10.1016/S0966-9795(03)00172-9
  • E. Ricci, D. Giuranno, R. Novakovic, T. Matsushita, S. Seetharaman, R. Brooks, L. Chapman, and P. Quested, Density, surface tension, and viscosity of CMSX-4® superalloy, Int. J. Thermophys. 28 (2007), pp. 1304–1321. doi: 10.1007/s10765-007-0257-0
  • L. Battezzati and D. Baldissin, The thermo lab project: thermophysical properties of superalloys, High Temp. Mater. Proc. 27 (2008), pp. 423–428. doi: 10.1515/HTMP.2008.27.6.423
  • R. Aune, L. Battezzati, R. Brooks, I. Egry, H.-J. Fecht, J.-P. Garandet, M. Hayashi, K.C. Mills, A. Passerone, and P.N. Quested, Thermophysical properties of in738Lc, Mm247Lc and Cmsx-4 in the liquid and high temperature solid phase, Superalloys. 718 (2005), pp. 625–706.
  • R. Aune, S. Seetharaman, L. Battezzati, I. Egry, F. Schmidt-Hohagen, J. Etay, H. Fecht, R. Wunderlich, A. Passerone, and E. Ricci, Surface tension measurements of Al-Ni based alloys from ground-based and parabolic flight experiments: results from the ThermoLab project, Microgravity-Sci. Tec. 18 (2006), p. 73. doi: 10.1007/BF02870383
  • H.-J. Fecht, R. Wunderlich, L. Battezzati, J. Etay, E. Ricci, S. Seetharaman, and I. Egry, Thermophysical properties of materials, Europhys. News. 39 (2008), pp. 19–21. doi: 10.1051/epn:2008501
  • F. Kohler, Zur Berechnung der thermodynamischen Daten eines ternären Systems aus den zugehörigen binären Systemen, Monatsh. Chem. Verw. Tl. 91 (1960), pp. 738–740. doi: 10.1007/BF00899814
  • Y.-M. Muggianu, M. Gambino, and J.-P. Bros, Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 k. Choix d’une représentation analytique des grandeurs d’excès intégrales et partielles de mélange, J. Chim. Phys. 72 (1975), pp. 83–88. doi: 10.1051/jcp/1975720083
  • K.-C. Chou, A general solution model for predicting ternary thermodynamic properties, Calphad. 19 (1995), pp. 315–325. doi: 10.1016/0364-5916(95)00029-E
  • M. Hillert, Empirical methods of predicting and representing thermodynamic properties of ternary solution phases, Calphad. 4 (1980), pp. 1–12. doi: 10.1016/0364-5916(80)90016-4
  • G. Toop, Predicting ternary activities using binary data, T Metall. Soc. AIME. 233 (1965), pp. 850–854.
  • The thermodynamics of the surfaces of solutions, Vol. 135, 827, The Royal Society.
  • J. Korozs, and G. Kaptay, Derivation of the Butler equation from the requirement of the minimum gibbs energy of a solution phase, taking into account its surface area, Colloids. Surf. A Physicochem. Eng. Asp. 533 (2017), pp. 296–301. doi: 10.1016/j.colsurfa.2017.09.010
  • G. Kaptay, Partial surface tension of components of a solution, Langmuir. 31 (2015), pp. 5796–5804. doi: 10.1021/acs.langmuir.5b00217
  • E. Guggenheim, Statistical thermodynamics of the surface of a regular solution, Trans. Faraday Soc. 41 (1945), pp. 150–156. doi: 10.1039/tf9454100150
  • I. Egry, The surface tension of binary alloys: simple models for complex phenomena, Int. J. Thermophys. 26 (2005), pp. 931–939. doi: 10.1007/s10765-005-6675-y
  • F. Aqra, and A. Ayyad, Theoretical calculations of the surface tension of liquid transition metals, Metall. Mater. Trans. B. 42 (2011), pp. 5–8. doi: 10.1007/s11663-010-9456-3
  • R.F. Brooks, I. Egry, S. Seetharaman, and D. Grant, Reliable data for high-temperature viscosity and surface tension: results from a European project, High Temp High Press (UK) 33 (2001), pp. 631–637.
  • J. Brillo and I. Egry, Surface tension of nickel, copper, iron and their binary alloys, J Mater Sci. 40 (2005), pp. 2213–2216. doi: 10.1007/s10853-005-1935-6
  • P. Shen, H. Fujii, T. Matsumoto, and K. Nogi, Influence of substrate crystallographic orientation on the wettability and adhesion of α-Al2O3 single crystals by liquid Al and Cu, J. Mater. Sci. 40 (2005), pp. 2329–2333. doi: 10.1007/s10853-005-1954-3
  • P. Laty, J. Joud, P. Desre, and G. Lang, Tension superficielle d’alliages liquides aluminium-cuivre, Surf. Sci. 69 (1977), pp. 508–520. doi: 10.1016/0039-6028(77)90130-3
  • J. Schmitz, J. Brillo, I. Egry, and R. Schmid-Fetzer, Surface tension of liquid Al–Cu binary alloys, Int. J. Mater. Res. 100 (2009), pp. 1529–1535. doi: 10.3139/146.110221
  • B. Allen, The surface tension of liquid transition metals at their melting points, Trans. AIME. 227 (1963).
  • J. Tille and J. Kelly, The surface tension of liquid titanium, Brit. J. Appl. Phys. 14 (1963), pp. 717–719. doi: 10.1088/0508-3443/14/10/332
  • V. Arkhipkin, A. Agaev, G. Grigorev, and V. Kostikov, Ind. Lab. 39 (1973), p. 1340.
  • A. Peterson, H. Kedesdy, P. Keck, and E. Schwarz, Surface tension of titanium, zirconium, and hafnium, J. Appl. Phys. 29 (1958), pp. 213–216. doi: 10.1063/1.1723069
  • V. ELYUTIN, und MA MAURAKH: Izvest, Akad. Nauk SSSR, Otdel. Tekh. Nauk (1956), pp. 129–131.
  • P.-F. Paradis, T. Ishikawa, and S. Yoda, Non-contact measurements of surface tension and viscosity of niobium, zirconium, and titanium using an electrostatic levitation furnace, Int. J. Thermophys. 23 (2002), pp. 825–842. doi: 10.1023/A:1015459222027
  • B. Vinet, L. Magnusson, H. Fredriksson, and P.J. Desré, Correlations between surface and interface energies with respect to crystal nucleation, J. Colloid. Interf. Sci. 255 (2002), pp. 363–374. doi: 10.1006/jcis.2002.8627
  • G. Kuppermann, The determination of the surface tension with the help of the levitierten reciprocating drop under terrestrial conditions and in space. Ph. D. thesis, 2000.
  • K.F. Man, Surface tension measurements of liquid metals by the quasi-containerless pendant drop method, Int. J. Thermophys. 21 (2000), pp. 793–804. doi: 10.1023/A:1006601821432
  • G. Kaptay, A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals, Mater. Sci. Engin A. 495 (2008), pp. 19–26. doi: 10.1016/j.msea.2007.10.112
  • G. Kaptay, Corrigendum to ‘A unified model for the cohesive enthalpy, critical temperature, surface tension and volume thermal expansion coefficient of liquid metals of bcc, fcc and hcp crystals’ [mater Sci Eng A 495 (2008) 19–26], Mater. Sci. Engin. A. 501 (2009), p. 255. doi: 10.1016/j.msea.2008.10.001
  • H. Eyring, M.S. Jhon, Significant Liquid Structures, John Wiley & Sons, New York, NY, USA, 1969.
  • T.S. Ree, T. Ree, and H. Eyring, Significant structure theory of surface tension, J. Chem. Phys. 41 (1964), pp. 524–530. doi: 10.1063/1.1725902
  • S.W. Kim, M.S. Jhon, T. Ree, and H. Eyring, The surface tension of binary liquid mixtures, P Natl. A Sci. India A. 59 (1968), pp. 336–342. doi: 10.1073/pnas.59.2.336
  • A. Ayyad and F. Aqra, Theoretical consideration of the anomalous temperature dependence of the surface tension of pure liquid gallium, Theor. Chem. Acc. 127 (2010), pp. 443–448. doi: 10.1007/s00214-010-0731-9
  • F. Aqra and A. Ayyad, Surface tension of pure liquid bismuth and its temperature dependence: theoretical calculations, Mater. Lett. 65 (2011), pp. 760–762. doi: 10.1016/j.matlet.2010.11.038
  • T. Iida and R.I. Guthrie, The physical properties of liquid metals, Clarendon Press, Walton Street, Oxford OX 2 6 DP, UK, 1993.
  • J.E. Schoutens, Some theoretical considerations of the surface tension of liquid metals for metal matrix composites, J. Mater. Sci. 24 (1989), pp. 2681–2686. doi: 10.1007/BF02385611
  • J. Brillo, I. Egry, and I. Ho, Density and thermal expansion of liquid Ag–Cu and Ag–Au alloys, Int. J. Thermophys. 27 (2006), pp. 494–506. doi: 10.1007/s10765-005-0011-4
  • S. Amore, S. Delsante, H. Kobatake, and J. Brillo, Excess volume and heat of mixing in Cu-Ti liquid mixture, J. Chem. Phys. 139 (2013), p. 064504. doi: 10.1063/1.4817679
  • T. Saito, Y. Shiraishi, and Y. Sakuma, Density measurement of molten metals by levitation technique at temperatures between 1800 and 2200 C, Trans. Iron Steel Inst. Japan. 9 (1969), pp. 118–126.
  • R. Arroyave, T. Eagar, and L. Kaufman, Thermodynamic assessment of the Cu–Ti–Zr system, J. Alloy. Compd. 351 (2003), pp. 158–170. doi: 10.1016/S0925-8388(02)01035-6
  • V. Krasovskyy and Y. Naidich, Surface tension and specific volume of copper–titanium melts measured by the sessile drop method, J. Adhes. Sci. Technol. 18 (2004), pp. 465–471. doi: 10.1163/156856104323016360
  • Z. Moser, W. Gasior, and J. Pstruś, Surface tension of liquid Ag-Sn alloys: experiment versus modeling, J. Phase. Equilib. 22 (2001), pp. 254–258. doi: 10.1361/105497101770338734
  • F. Aqra and A. Ayyad, Theoretical calculations of the surface tension of Ag (1- x)–Cu (x) liquid alloys, J. Alloy. Compd. 509 (2011), pp. 5736–5739. doi: 10.1016/j.jallcom.2011.02.148

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.