463
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

On the comparative assessment of ratcheting-induced dislocation density in 42CrMo4 steel by X-ray diffraction profile analysis and hardness measurement

, , &
Pages 2637-2656 | Received 25 Jan 2018, Accepted 02 Jul 2018, Published online: 14 Jul 2018

References

  • J.W. Ringsberg, Life prediction of rolling contact fatigue crack initiation, Int J Fatigue. 23 (7) (2001), pp. 575–586. doi: 10.1016/S0142-1123(01)00024-X
  • C. Gaudin and X. Feaugas, Cyclic creep process in AISI 316L stainless steel in terms of dislocation patterns and internal stresses, Acta. Mater. 52 (10) (2004), pp. 3097–3110. doi: 10.1016/j.actamat.2004.03.011
  • R. Kreethi, A.K. Mondal, and K. Dutta, Ratcheting fatigue behavior of 42CrMo4 steel under different heat treatment conditions, Mater. Sci. Eng. A. 679 (2017), pp. 66–74. doi: 10.1016/j.msea.2016.10.019
  • G. Kang, Y. Dong, H. Wang, Y. Liu, and X. Cheng, Dislocation evolution in 316L stainless steel subjected to uniaxial ratcheting deformation, Mater. Sci. Eng. A. 527 (21–22) (2010), pp. 5952–5961. doi: 10.1016/j.msea.2010.06.020
  • K. Dutta and K.K. Ray, Ratcheting strain in interstitial free steel, Mater. Sci. Eng. A. 575 (2013), pp. 127–135. doi: 10.1016/j.msea.2013.02.052
  • S. Graca, R. Colaco, P.A. Carvalho, and R. Vilar, Determination of dislocation density from hardness measurements in metals, Mater. Lett. 62 (23) (2008), pp. 3812–3814. doi: 10.1016/j.matlet.2008.04.072
  • R.W. Cahn and P. Haasen, Physical Metallurgy, Vol. 2, North-Holland Publishing Company, Netherlands, 1996.
  • R. Kishor, L. Sahu, K. Dutta, and A.K. Mondal, Assessment of dislocation density in asymmetrically cyclic loaded non-conventional stainless steel using X-ray diffraction profile analysis, Mater. Sci. Eng. A. 598 (2014), pp. 299–303. doi: 10.1016/j.msea.2014.01.043
  • K. Dutta, R. Kishor, L. Sahu, and A.K. Mondal, On the role of dislocation characters influencing ratcheting deformation of austenitic stainless steel, Mater. Sci. Eng. A. 660 (2016), pp. 47–51. doi: 10.1016/j.msea.2016.02.076
  • W.D. Nix and H. Gao, Indentation size effects in crystalline materials: A law for strain gradient plasticity, Mech. Phys. Solids. 46 (3) (1998), pp. 411–425. doi: 10.1016/S0022-5096(97)00086-0
  • N.K. Mukhopadhyay and P. Paufler, Micro and nano-indentation techniques for mechanical characterization of materials, Int. Mater. Rev. 51 (4) (2006), pp. 209–245. doi: 10.1179/174328006X102475
  • H. Buckle, J.H. Westbrook, and H. Conrad (ed.), The Science of Hardness Testing and its Research Applications, American Society of Metals, Metals Park, OH, 1973.
  • T.F. Page, W.C. Oliver, and C.J. McHargue, The deformation behavior of ceramic crystals subjected to very low load (nano) indentations, J. Mater. Res. 7 (2) (1992), pp. 450–473. doi: 10.1557/JMR.1992.0450
  • Q. Ma and D.R. Clarke, Size dependent hardness of silver single crystals, J. Mater. Res. 10 (4) (1995), pp. 853–863. doi: 10.1557/JMR.1995.0853
  • S.J. Bull, T.F. Page, and E.H. Yoffe, An explanation of the indentation size effect in ceramics, Phil. Mag. Lett. 59 (6) (1989), pp. 281–288. doi: 10.1080/09500838908206356
  • J. Guille and M. Sieskind, Micro-indentation studies on BaFCl single crystals, J. Mater. Sci. 26 (4) (1991), pp. 899–903. doi: 10.1007/BF00576765
  • H.M. Pollock, D. Maugis, and M. Barquins, P.J. Blau, and B.R. Lawn (ed.), Micro-indentation Techniques in Materials Science and Engineering, American Society of Testing and Materials, Philadelphia, PA, 1986, pp. 47–71.
  • M. Manimaran, S.N. Kalkura, and P. Ramasamy, Crystallization of ZnSnAs2 by physical vapour transport, J. Mater. Sci. Lett. 14 (19) (1995), pp. 1366–1368. doi: 10.1007/BF00270730
  • K. Sangwal, On the reverse indentation size effect and microhardness measurement of solids, Mater. Chem. Phys. 63 (2) (2000), pp. 145–152. doi: 10.1016/S0254-0584(99)00216-3
  • G. Kang, Y. Liu, Y. Dong, and Q. Gao, Uniaxial ratcheting behaviors of metals with different crystal structures or values of fault energy: Macroscopic experiments, J. Mater. Sci. Technol. 27 (5) (2011), pp. 453–459. doi: 10.1016/S1005-0302(11)60090-X
  • F. Yoshida, Uniaxial and biaxial creep-ratcheting behavior of SUS304 stainless steel at room temperature, Int. J. Pres. Vessels Pip. 44 (2) (1990), pp. 207–223. doi: 10.1016/0308-0161(90)90130-A
  • X. Chen, D.H. Yu, and K.S. Kim, Experimental study on ratcheting behavior of eutectic tin-lead solder under multiaxial loading, Mater. Sci. Eng. A 406 (2005), pp. 86–94. doi: 10.1016/j.msea.2005.06.013
  • G. Kang, and Q. Kan, Cyclic plasticity of engineering materials: Experiments and models, John Wiley & Sons, Ltd.. 2017, pp. 35–122.
  • K. Dutta and K.K. Ray, Ratcheting phenomenon and post-ratcheting tensile behavior of an aluminum alloy, Mater. Sci. Eng. A. 540 (2012), pp. 30–37. doi: 10.1016/j.msea.2012.01.024
  • G.V.S. Murthy, A.K. Ray, R.K. Minz, and N.K. Mukhopadhyay, Microhardness and fracture toughness studies of decagonal quasicrystal in Al-Cu-Co system, J. Mater. Sci. Lett. 18 (3) (1999), pp. 255–228. doi: 10.1023/A:1006694130894
  • N.K. Mukhopadhyay, G.C. Weatherly, and J.D. Embury, An analysis of microhardness of single-quasicrystals in the Al–Cu–Co–Si system, Mater. Sci. Eng. A. 315 (2001), pp. 202–210. doi: 10.1016/S0921-5093(01)01186-8
  • G.E. Dieter, Mechanical Metallurgy, 2nd ed., McGraw-Hill Book Co., New York, 1976.
  • P. Koteeswari, S. Sagadevan, and P. Mani, Synthesis, growth and characterization of picolinic acid hydrochloride: A novel semiorganic nonlinear optical single crystal, Int. J. Phys. Sci. 8 (42) (2013), pp. 1988–1993.
  • K. Durst, B. Backes, and M. Goken, Indentation size effect in metallic materials: Correcting for the size of the plastic zone, Scr. Mater. 52 (11) (2005), pp. 1093–1097. doi: 10.1016/j.scriptamat.2005.02.009
  • R.A. Renzetti, H.R.Z. Sandim, R.E. Bolmaro, P.A. Suzuki, and A. Moslang, X-ray evaluation of dislocation density in ODS-Eurofer steel, Mater. Sci. Eng. A 534 (2012), pp. 142–146. doi: 10.1016/j.msea.2011.11.051
  • P.P. Seth, A. Das, H.N. Bar, S. Sivaprasad, A. Basu, and K. Dutta, Evolution of dislocation density during tensile deformation of BH220 steel at different pre-strain conditions, J. Mater. Eng. Perform.24 (7) (2015), pp. 2779–2783. doi: 10.1007/s11665-015-1554-6
  • H. Roy, A. Ray, K. Barat, C. Hochmuth, S. Sivaprasad, S. Tarafder, U. Glatzel, and K.K. Ray, Structural variations ahead of crack tip during monotonic and cyclic fracture tests of AISI 304LN stainless steel, Mater. Sci. Eng. A 561 (2013), pp. 88–99. doi: 10.1016/j.msea.2012.10.074
  • T. Shintani and Y. Murata, Evaluation of the dislocation density and dislocation character in cold rolled type 304 steel determined by profile analysis of X-ray diffraction, Acta Metall. 59 (2011), pp. 4314–4322.
  • T. Ungar, Dislocation densities, arrangements and character from X-ray diffraction experiments, Mater. Sci. Eng. A309–310 (2001), pp. 14–22.
  • G. Ribarik and T. Ungar, Characterization of the microstructure in random and textured polycrystals and single crystals by diffraction line profile analysis, Mater. Sci. Eng. A 528 (1) (2010), pp. 112–121. doi: 10.1016/j.msea.2010.08.059
  • T. Ungar, S. Ott, P.G. Sanders, A. Borbely, and J.R. Weertman, Dislocations, grain size and planar faults in nanostructured copper determined by high resolution X-ray diffraction and a new procedure of peak profile analysis, Acta Mater. 46 (10) (1998), pp. 3693–3699. doi: 10.1016/S1359-6454(98)00001-9
  • K. Dutta, S. Sivaprasad, S. Tarafder, and K.K. Ray, Influence of asymmetric cyclic loading on substructure formation and ratcheting fatigue behavior of AISI 304LN stainless steel, Mater. Sci. Eng. A 527 (2010), pp. 7571–7579. doi: 10.1016/j.msea.2010.07.107
  • G. Kang, Y. Dong, Y. Liu, H. Wang, and X. Cheng, Uniaxial ratcheting of 20 carbon steel: Macroscopic and microscopic experimental observations, Mater. Sci. Eng. A 528 (2011), pp. 5610–5620. doi: 10.1016/j.msea.2011.03.113
  • F. Lorenzo and C. Laird, Cyclic creep acceleration and retardation in polycrystalline copper tested at ambient temperature, Acta Metall. 32 (5) (1984), pp. 681–692. doi: 10.1016/0001-6160(84)90142-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.