116
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Dynamic magnetic and hysteretic properties of the different type core/shell nanostructures: the effect of geometry of wire shape

&
Pages 2734-2748 | Received 20 Sep 2017, Accepted 15 Jul 2018, Published online: 02 Aug 2018

References

  • K. Liu, K. Nagodawithana, P. C. Searson, and C. L. Chien, Perpendicular giant magnetoresistance of multilayered Co/Cu nanowires, Phys. Rev. B 51 (1995), pp. 7381–7385. doi: 10.1103/PhysRevB.51.7381
  • L. Piraux, S. Dubois, C. Marchal, J. M. Beuken, L. Filipozzi, J. F. Depres, K. Ounadjela, and A. Fert, Perpendicular magnetoresistance in Co/Cu multilayered nanowires, J. Magn. Magn. Mater. 156 (1996), pp. 317–320. doi: 10.1016/0304-8853(95)00882-9
  • S. Dubois, C. Marchal, J. M. Beuken, L. Piraux, J. L. Duvail, A. Fert, J. M. George, and J. L. Maurice, Perpendicular giant magnetoresistance of NiFe/Cu multilayered nanowires, Appl. Phys. Lett. 70 (1997), pp. 396–398. doi: 10.1063/1.118385
  • L. Piraux, S. Dubois, A. Fert, and L. Belliard, The temperature dependence of the perpendicular giant magnetoresistance in Co/Cu multilayered nanowires, Euro. Phys. J. B 4 (1998), pp. 413–420. doi: 10.1007/s100510050398
  • M. Chen, P. C. Searson, and C. L. Chien, Micromagnetic behavior of electrodeposited NiICu multilayer nanowires, J. Appl. Phys. 93 (2003), pp. 8253–8255. doi: 10.1063/1.1556136
  • M. Chen, L. Sun, J. E. Bonevich, D. H. Reich, C. L. Chien, and P. C. Searson, Tuning the response of magnetic suspensions, Appl. Phys. Lett. 82 (2003), pp. 3310–3312. doi: 10.1063/1.1569429
  • K. Hilal, K. Hakan, and A. Mursel, Characterizations of NiCu/Cu multilayers: dependence of nonmagnetic layer thickness, J. Superconduc. Novel Magn. 26 (2013), pp. 779–784. doi: 10.1007/s10948-012-1979-1
  • J.U. Cho, J.H. Min, S.P. Ko, J.Y. Soh, Y.K. Kim, J.H. Wu, and S.H. Choi, Effect of external magnetic field on anisotropy of Co/Cu multilayer nanowires, J. Appl. Phys. 99 (2006), pp. 08C909-08C912. doi: 10.1063/1.2172579
  • E.M. Palmero, C. Bran, R.P. del Real, C. Magén, and M. Vázquez, Magnetic behavior of NiCu nanowire arrays: compositional, geometry and temperature dependence, J. Appl. Phys. 116 (2014), pp. 033908–033915. doi: 10.1063/1.4890358
  • J. García, V.M. Prida, L.G. Vivas, B. Hernando, E.D. Barriga-Castro, R. Mendoza-Reséndez, and M. Vázquez, Magnetization reversal dependence on effective magnetic anisotropy in electroplated Co–Cu nanowire arrays, J. Mater. Chem. C 3 (2015), pp. 4688–4697. doi: 10.1039/C4TC02988G
  • S. Ishrat, K. Maaz, K.J. Lee, M.H. Jung, and G.H. Kim, Nickel segment-length dependent magnetic properties of Au–Ni–Au nanowires at low temperature fabricated by electrochemical deposition, J. Solid State Chem. 199 (2013), pp. 160–163. doi: 10.1016/j.jssc.2012.12.001
  • R. Ghosh and D. Basak, Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction, Appl. Phys. Lett. 90 (2007), pp. 243106–243109. doi: 10.1063/1.2748333
  • C. Thelander, T. Martensson, M.T. Bjork, B.J. Ohlsson, M.W. Larsson, L.R. Wallenberg, and L. Samuelson, Single-electron transistors in heterostructure nanowires, Appl. Phys. Lett. 83 (2003), pp. 2052–2054. doi: 10.1063/1.1606889
  • S.H. Park, S.-W. Chung, and C.A. Mirkin, Hybrid organic-inorganic, rod-shaped nanoresistors and diodes, J. Am. Chem. Soc. 126 (2004), pp. 11772–11773. doi: 10.1021/ja046077v
  • V.S. Leite and W. Figueiredo, Spin-glass surface disorder on the magnetic behaviour of antiferromagnetic small particles, Physica A 350 (2005), pp. 379–392. doi: 10.1016/j.physa.2004.11.036
  • I. Apostolova and J.M. Wesselinowa, Magnetic control of ferroelectric properties in multiferroic BiFeO3 nanoparticles, Solid State Commun. 147 (2008), pp. 94–97. doi: 10.1016/j.ssc.2008.05.003
  • K. Pitzschel, J. Bachmann, J.M. Montero-Moreno, J. Escrig, D. Görlitz, and K. Nielsch, Reversal modes and magnetostatic interactions in Fe3O4/ZrO2/Fe3O4 multilayer nanotubes, Nanotechnology 23 (2012), pp. 495718–495724. doi: 10.1088/0957-4484/23/49/495718
  • G. Salazar-Alvarez, J. Sort, A. Uheida, M. Muhammed, S. Suriñach, M. Dolors Baróa, and J. Noguésb, Reversible post-synthesis tuning of the superparamagnetic blocking temperature of γ-Fe2O3 nanoparticles by adsorption and desorption of Co(II) ions, J. Mater. Chem. 17 (2007), pp. 322–328. doi: 10.1039/B613026G
  • L. Xi, Z. Wang, Y. Zuo, and X. Shi, The enhanced microwave absorption property of CoFe2O4 nanoparticles coated with a Co3Fe7–Co nanoshell by thermal reduction, Nanotechnology 22 (2011), pp. 045707–045713. doi: 10.1088/0957-4484/22/4/045707
  • J.-h. Lee, J.-T. Jang, J.-s. Choi, S. Ho Moon, S.-h. Noh, J.-w. Kim, J.-G. Kim, IL-Sun Kim, K. In Park, and J. Cheon, Exchange-coupled magnetic nanoparticles for efficient heat induction, Nat. Nanotechnol. 6 (2011), pp. 418–422.
  • G. S. Chaubey, V. Nandwana, N. Poudyal, C.-b. Rong, and J. Ping Liu, Synthesis and characterization of bimagnetic bricklike nanoparticles, Chem. Mater. 20 (2008), pp. 475–478. doi: 10.1021/cm7028068
  • T. Kaneyoshi, Magnetizations of a transverse Ising nanowire, J. Magn. Magn. Mate. 322 (2010), pp. 3410–3415. doi: 10.1016/j.jmmm.2010.06.037
  • Y. Kocakaplan, E. Kantar, and M. Keskin, Hysteresis loops and compensation behavior of cylindrical transverse spin-1 Ising nanowire with the crystal field within effective-field theory based on a probability distribution technique, Eur. Phys. J. B 86 (2013), pp. 420–429. doi: 10.1140/epjb/e2013-40659-0
  • M. Keskin, N. Şarlı, and B. Deviren, Hysteresis behaviors in a cylindrical Ising nanowire, Solid State Comm. 151 (2011), pp. 1025–1030. doi: 10.1016/j.ssc.2011.04.019
  • A. Zaim, M. Kerouad, and M. Boughrara, Effects of the random field on the magnetic behavior of nanowires with core/shell morphology, J. Magn. Magn. Mater. 331 (2013), pp. 37–44. doi: 10.1016/j.jmmm.2012.11.018
  • E. Kantar, B. Deviren, and M. Keskin, Magnetic properties of mixed Ising nanoparticles with core-shell structure, Eur. Phys. J. B 86 (2013), pp. 253–266. doi: 10.1140/epjb/e2013-40080-9
  • E. Kantar and Y. Kocakaplan, Hexagonal type Ising nanowire with core/shell structure: the phase diagrams and compensation behaviors, Solid State Commun. 177 (2014), pp. 1–6. doi: 10.1016/j.ssc.2013.09.026
  • W. Jiang, F. Zhang, X.-Xi Li, H.-Yu Guan, A.-B. Guo, and Z. Wang, Surface effects on a ferrimagnetic hexagonal nanowire with single-ion anisotropis and transverse field, Physica E 47 (2013), pp. 95–102. doi: 10.1016/j.physe.2012.10.023
  • O. Iglesias and A. Labarta, Finite-size and surface effects in maghemite nanoparticles: Monte Carlo simulations, Phys. Rev. B 63 (2001), pp. 184416–184427. doi: 10.1103/PhysRevB.63.184416
  • O. Iglesias, X. Batlle, and A. Labarta, Elucidation of coordination structure around Ce3 in doped SiO2 glasses using pulsed electron paramagnetic resonance: effect of phosphorus, boron, and phosphorus-boron codoping, Phys. Rev. B 72 (2005), pp. 212401–212405. doi: 10.1103/PhysRevB.72.212401
  • M. Vasilakaki and K.N. Trohidou, Numerical study of the exchange-bias effect in nanoparticles with ferromagnetic core/ferrimagnetic disordered shell morphology, Phys. Rev. B 79 (2009), pp. 144402–144410. doi: 10.1103/PhysRevB.79.144402
  • A. Zaim and M. Kerouad, Monte Carlo simulation of the compensation and critical behaviors of a ferrimagnetic core/shell nanoparticle Ising model, Physica A 389 (2010), pp. 3435–3442. doi: 10.1016/j.physa.2010.04.034
  • Y. Yuksel, E. Aydiner, and H. Polat, Thermal and magnetic properties of a ferrimagnetic nanoparticle with spin-3/2 core and spin-1 shell structure, J. Magn. Magn. Mater 323 (2011), pp. 3168–3175. doi: 10.1016/j.jmmm.2011.07.011
  • J.M. Wesselinowa, Size and anisotropy effects on magnetic properties of antiferromagnetic nanoparticles, J. Magn. Magn. Mater 322 (2010), pp. 234–237. doi: 10.1016/j.jmmm.2009.08.045
  • J.M. Wesselinowa and I. Apostolova, Theoretical study of multiferroic BiFeO3 nanoparticles, J. App. Phys. 104 (2008), pp. 084108–084115. doi: 10.1063/1.3006003
  • L.G.C. Rego and W. Figueiredo, Magnetic properties of nanoparticles in the Bethe-Peierls approximation, Phys. Rev. B 64 (2001), pp. 144424–144431. doi: 10.1103/PhysRevB.64.144424
  • B. Deviren, E. Kantar, and M. Keskin, Dynamic phase transitions in a cylindrical Ising nanowire under a time-dependent oscillating magnetic field, J. Magn. Magn. Mater 324 (2012), pp. 2163–2170. doi: 10.1016/j.jmmm.2012.02.041
  • B. Deviren, M. Ertaş, and M. Keskin, Dynamic magnetizations and dynamic phase transitions in a transverse cylindrical Ising nanowire, Phys. Scr. 85 (2012), pp. 055001–055011. doi: 10.1088/0031-8949/85/05/055001
  • M. Ertaş and Y. Kocakaplan, Dynamic behaviors of the hexagonal Ising nanowire, Phys. Lett. A 378 (2014), pp. 845–850. doi: 10.1016/j.physleta.2014.01.026
  • E. Kantar, M. Ertaş, and M. Keskin, Dynamic phase diagrams of a cylindrical Ising nanowire in the presence of a time dependent magnetic field, J. Magn. Magn. Mater. 361 (2014), pp. 61–67. doi: 10.1016/j.jmmm.2014.02.090
  • C. Wang, Z.Z. Lu, W.X. Yuan, S.Y. Kwok, and B.H. Teng, Dynamic properties of phase diagram in cylindrical ferroelectric nanotubes, Phys Lett A 375 (2011), pp. 3405–3409. doi: 10.1016/j.physleta.2011.07.056
  • Y. Yüksel, E. Vatansever, and H. Polat, Dynamic phase transition properties and hysteretic behavior of a ferrimagnetic core–shell nanoparticle in the presence of a time dependent magnetic field, J. Phys.: Condens. Matter. 24 (2012), pp. 436004–436017.
  • E. Kantar and M. Ertaş, Influence of frequency on the kinetic spin-3/2 cylindrical Ising nanowire system in an oscillating field, J. Super. Nov. Magn. 28 (2015), pp. 2529–2538 doi: 10.1007/s10948-015-3072-z
  • M. Ertaş and E. Kantar, Cylindrical Ising nanowire with crystal field: existence of a dynamic compensation temperatures, Phase Transit. 88 (2015), pp. 567–581. doi: 10.1080/01411594.2014.1002783
  • E. Kantar and M. Ertaş, Cylindrical Ising nanowire in an oscillating magnetic field and dynamic compensation temperature, Superlattices Microstruct. 75 (2014), pp. 831–842. doi: 10.1016/j.spmi.2014.08.002
  • E. Vatansever and H. Polat, Non-equilibrium dynamics of a ferrimagnetic core–shell nanocubic particle, Physica A 394 (2014), pp. 82–89. doi: 10.1016/j.physa.2013.09.043
  • E. Kantar and Y. Kocakaplan, Hexagonal type Ising nanowire with mixed spins: some dynamic behaviors, J. Magn. Magn. Mater 393 (2015), pp. 574–583. doi: 10.1016/j.jmmm.2015.06.009
  • R.J. Glauber, Time-dependent statistics of the Ising model, J. Math. Phys. 4 (1963), pp. 294–307. doi: 10.1063/1.1703954

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.