213
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Slip activity in molybdenum single crystals compressed at 77 K

, , &
Pages 2749-2768 | Received 24 Jan 2018, Accepted 21 Jul 2018, Published online: 10 Aug 2018

References

  • G.I. Taylor and C.F. Elam, The distortion of iron crystals, Proc. R. Soc. Lond. A 112 (1926), pp. 337–361. doi: 10.1098/rspa.1926.0116
  • G.I. Taylor, The deformation of crystals of β-brass, Proc. R. Soc. Lond. A 118 (1928), pp. 1–24. doi: 10.1098/rspa.1928.0032
  • H. Conrad and W. Hayes, Thermally-activated deformation of the bcc metals at low temperatures, Trans. ASM 56 (1963), pp. 249–262.
  • R.J. Arsenault, Low temperature of deformation of bcc metals and their solid-solution alloysin, in Plastic Deformation of Materials , Vol. 6, Arsenault R.J., eds., Academic Press, New York, 1975. pp. 1–99.
  • J.W. Christian, Some surprising features of the plastic deformation of body-centered cubic metals and alloys, Metall. Trans. A 14 (1983), pp. 1237–1256. doi: 10.1007/BF02664806
  • J.H. Hoke and R. Maddin, The deformation of molybdenum single crystals in compression, J. Mech. Phys. Solids 5 (1956), pp. 26–40. doi: 10.1016/0022-5096(56)90005-9
  • N.K. Chen and R. Maddin, Slip planes and the energy of dislocations in a body-centered cubic structure, Acta Metall. 2 (1954), pp. 49–51. doi: 10.1016/0001-6160(54)90093-0
  • D.L. Davidson, F.R. Brotzen, Orientation effects in the deformation of molybdenum crystals. Trans. AIME 233 (1965), pp. 838–839.
  • F. Guiu and P. Pratt, The effect of orientation on the yielding and flow of molybdenum single crystals, Phys. Stat. Sol. 15 (1966), pp. 539–552. doi: 10.1002/pssb.19660150214
  • F. Guiu, Temperature and strain rate dependence of the flow stress in molybdenum, Phys. Stat. Sol. 19 (1967), pp. 339–351. doi: 10.1002/pssb.19670190135
  • F. Guiu, Deformation of molybdenum single crystals at slow rates of strain, Phys. Stat. Sol. 25 (1968), pp. 189–202. doi: 10.1002/pssb.19680250118
  • L. Kaun, A. Luft, J. Richter, and D. Schulze, Slip line pattern and active slip systems of tungsten and molybdenum single crystals weakly deformed in tension at room temperature, Phys. Stat. Sol. 26 (1968), pp. 485–499. doi: 10.1002/pssb.19680260212
  • J. Richter, The influence of temperature on slip behaviour of molybdenum single crystals deformed in tension in the range from 293 to 573K: I. Stress-strain characteristics, Phys. Stat. Sol. 40 (1970), pp. 565–572. doi: 10.1002/pssb.19700400215
  • J. Richter, The influence of temperature on slip behaviour of molybdenum single crystals deformed in tension in the range from 293 to 573K: II. Slip geometry and structure of slip bands, Phys. Stat. Sol. B 46 (1971), pp. 203–215. doi: 10.1002/pssb.2220460118
  • F. Guiu, Slip asymmetry in molybdenum single crystals deformed in direct shear, Scr. Metall. 3 (1969), pp. 449–454. doi: 10.1016/0036-9748(69)90129-X
  • P.J. Jeffcoat, B.L. Mordike, and K.D. Rogausch, Anomalous slip in Mo-5 at.% Nb and Mo-5 at.% Re alloy single crystals, Philos. Mag. 34 (1976), pp. 583–592. doi: 10.1080/14786437608223795
  • P.J. Jeffcoat and B.L. Mordike, Slip line studies in pure molybdenum single crystals deformed in compression at low temperatures, Z. Metallk. 70 (1979), pp. 38–46.
  • K. Kitajima, Y. Aono, and E. Kuramoto, Slip systems and orientation dependence of yield stress in high purity molybdenum single crystals at 4.2 K and 77 K, Scr. Metall. 15 (1981), pp. 919–924. doi: 10.1016/0036-9748(81)90278-7
  • Y. Aono, E. Kuramoto, D. Brunner, J. Diehl, Plastic behavior of high-purity molybdenum single crystals in tension and compression, in Strength of Metals and Alloys (ICSMA8): Proceedings of the 8th International Conference, Kettunen P.O, Lepistö T. K., Lehtonen M.E., eds., Pergamon Press, Oxford, 1989. pp. 271–276.
  • H. Matsui, H. Saka, K. Noda, H. Kimura, and T. Imura, Direct observation of active ‘unexpected slip’ in molybdenum by HVEM, Scr. Metall. 8 (1974), p. 467. doi: 10.1016/0036-9748(74)90053-2
  • H. Matsui and H. Kimura, Anomalous slip in high-purity molybdenum single crystals and its comparison with that in V(a) metals, Mater. Sci. Eng. 24 (1976), pp. 247–256. doi: 10.1016/0025-5416(76)90118-X
  • H. Saka, K. Noda, T. Imura, H. Matsui, and H. Kimura, HVEM in-situ observation of anomalous slip in molybdenum, Philos. Mag. 34 (1976), pp. 33–48. doi: 10.1080/14786437608228172
  • H. Saka, H. Matsui, K. Noda, H. Kimura, and T. Imura, Direct observation of anomalous slip in molybdenum by HVEM, Scr. Metall. 10 (1976), pp. 59–62. doi: 10.1016/0036-9748(76)90328-8
  • H. Matsui, H. Kimura, H. Saka, K. Noda, and T. Imura, Anomalous slip induced by the surface effect in molybdenum single-crystal foils deformed in a high voltage electron microscope, Mater. Sci. Eng. 53 (1982), pp. 263–272. doi: 10.1016/0025-5416(82)90060-X
  • H. Matsui and H. Kimura, A mechanism of the ‘unexpected slip’ observed in bcc metals deformed at low temperatures, Scr. Metall. 7 (1973), pp. 905–914. doi: 10.1016/0036-9748(73)90139-7
  • A. Lawley, J. Van den Sype, and R. Maddin, Tensile properties of zone-refined molybdenum in the temperature range 4.2–373K, J. Inst. Metals 91 (1962), pp. 23–28.
  • C.N. Reid, A. Gilbert, and G.T. Hahn, Twinning and brittle fracture in molybdenum, Trans. Metall. Soc. AIME 236 (1966), pp. 1024–1030.
  • S.S. Lau and J.E. Dorn, Interstitial impurity effects on the mechanical properties of molybdenum single crystals, Scr. Metall. 2 (1968), pp. 335–339. doi: 10.1016/0036-9748(68)90134-8
  • Y. Aono, E. Kuramoto, and N. Yoshida, Effects of 14 MeV neutron irradiation on mechanical properties of high purity molybdenum single crystals, Mater. Trans. 34 (1993), pp. 1130–1136. doi: 10.2320/matertrans1989.34.1130
  • R. Gröger, V. Racherla, J.L. Bassani, and V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten: II. Yield criterion for single crystals based on atomistic studies of glide of 1/2 screw dislocations, Acta Mater. 56 (2008), pp. 5412–5425. doi: 10.1016/j.actamat.2008.07.037
  • G.J. Irwin, F. Guiu, and P.L. Pratt, The influence of orientation on slip and strain hardening of molybdenum single crystals, Phys. Stat. Sol. A 22 (1974), pp. 685–698. doi: 10.1002/pssa.2210220236
  • R.M. Rose, D.P. Ferriss, and J. Wulff, Yielding and plastic flow in single crystals of tungsten, Trans. Metall. Soc. AIME 224 (1962), pp. 981–990.
  • R. Gröger, A.G. Bailey, and V. Vitek, Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2 screw dislocations at 0 K, Acta Mater. 56 (2008), pp. 5401–5411. doi: 10.1016/j.actamat.2008.07.018
  • M.S. Duesbery, On non-glide stresses and their influence on the screw dislocation core in body-centered cubic metals. I. The Peierls stress, Proc. R. Soc. Lond. A 392 (1984), pp. 145–173. doi: 10.1098/rspa.1984.0027
  • R. Gröger, Which stresses affect the glide of screw dislocations in bcc metals? Philos. Mag. 94 (2014), pp. 2021–2030. doi: 10.1080/14786435.2014.904058
  • K. Ito and V. Vitek, Atomistic study of non-Schmid effects in the plastic yielding of bcc metals, Philos. Mag. A 81 (2001), pp. 1387–1407. doi: 10.1080/01418610108214447
  • M. Mrovec, D. Nguyen-Manh, D.G. Pettifor, and V. Vitek, Bond-order potential for molybdenum: Application to dislocation behavior, Phys. Rev. B 69 (2004), p. 094115. doi: 10.1103/PhysRevB.69.094115
  • M. Mrovec, R. Gröger, A.G. Bailey, D. Nguyen-Manh, C. Elsässer, and V. Vitek, Bond-order potential for simulations of extended defects in tungsten, Phys. Rev. B 75 (2007), p. 104119. doi: 10.1103/PhysRevB.75.104119
  • M. Mrovec, D. Nguyen-Manh, C. Elsässer, and P. Gumbsch, Magnetic bond-order potential for iron, Phys. Rev. Lett. 106 (2011), p. 246402. doi: 10.1103/PhysRevLett.106.246402
  • Y.S. Lin, M. Mrovec, and V. Vitek, A new method for development of bond-order potentials for transition bcc metals, Model. Simul. Mater. Sci. Eng. 22 (2014), p. 034002.
  • Q. Qin and J.L. Bassani, Non-Schmid yield behavior in single crystals, J. Mech. Phys. Sol. 40 (1992), pp. 813–833. doi: 10.1016/0022-5096(92)90005-M
  • Q. Qin and J.L. Bassani, Non-associated plastic flow in single crystals, J. Mech. Phys. Sol. 40 (1992), pp. 835–862. doi: 10.1016/0022-5096(92)90006-N
  • L. Hollang, M. Hommel, and A. Seeger, The flow stress of ultra-high-purity molybdenum single crystals, Phys. Stat. Sol. A 160 (1997), pp. 329–354. doi: 10.1002/1521-396X(199704)160:2<329::AID-PSSA329>3.0.CO;2-O
  • A. Seeger and L. Hollang, The flow-stress asymmetry of ultra-pure molybdenum single crystals, Mater. Trans. 41 (2000), pp. 141–151. doi: 10.2320/matertrans1989.41.141
  • M.S. Duesbery, R.A. Foxall, and P.B. Hirsch, The plasticity of pure niobium crystals, J. Phys. Coll. C3 27 (1966), pp. 193–204.
  • W. Lang, Nomarski differential interference-contrast microscopy. Zeiss Information 70 (1968), pp. 114–120.
  • D.B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss Inc, New York, 2001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.