170
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Displacement fields around Guinier–Preston 1 zones in Al–Cu alloys: investigations using MD and ADF-STEM image simulations

&
Pages 2845-2860 | Received 06 Mar 2018, Accepted 30 Jul 2018, Published online: 09 Aug 2018

References

  • V. Gerold, The structure of Guinier–Preston zones in aluminum–copper alloys, Acta Crystallogr. 11 (1958), p. 230.
  • K. Toman, The structure of Guinier–Preston zones. II. The room-temperature ageing of the Al–Cu alloy, Acta Crystallogr. 10 (1957), pp. 187–190.
  • K. Doi, The structure analysis of a Guinier–Preston zone by means of a Fourier method, Acta Crystallogr. 13 (1960), pp. 45–49.
  • D.R. James and G.L. Liedl, Variations in the structure of Guinier–Preston zones during aging, Acta Crystallogr. 18 (1965), pp. 678–681.
  • T. Sato, Y. Kojima, and T. Takahashi, Structure analysis of G.P. zones formed in a stress-aged Al-3%Cu alloy by the measurements of X-ray diffuse scattering, J. Jpn. Inst. Met. 44 (1980), 371–377.
  • T. Mori, M. Wada, H. Kita … O. Nishikawa, Resolution of Cu atoms in a GP[1] zone in Al–Cu by FIM and determination of the GP[1] structure. Jpn. J. Appl. Phys 22 (1983), pp. L203
  • M. Wada, H. Kita, and T. Mori, FIM observation of GP zones in an Al-4%Cu alloy, Acta Metall. 33 (1985), pp. 1631–1636.
  • T. Sato and T. Takahashi, High resolution electron microscopy studies on the precipitation in an Al-4%Cu alloy, Trans. Jpn. Inst. Met. 24 (1983), pp. 386–395.
  • K. Osamura, Y. Murakami, T. Sato, T. Takahashi, T. Abe, and K. Hirano, Structure of G.P. zones in an Al-1.7at.%Cu alloy aged for 14 years at room temperature, Acta Metall. 31 (1983), pp. 1669–1673.
  • K. Hono, T. Satoh, and K.-I. Hirano, Evidence of multi-layer GP zones in Al-1·7at.%Cu alloy, Philos. Mag. A 53 (1986), pp. 495–504.
  • T. Sato and T. Takahashi, High resolution electron microscopy on the layered structures of GP zones in an Al-1.7at%Cu alloy, Scr. Metall. 22 (1988), pp. 941–946.
  • X. Auvray, P. Georgopoulos, and J.B. Cohen, The structure of G.P. I zones in Al-1.7 at.% Cu, Acta Metall. 29 (1981), pp. 1061–1075.
  • E. Matsubara and J.B. Cohen, The G.P. zones in Al–Cu alloys—I, Acta Metall. 33 (1985), pp. 1945–1955.
  • T.J. Konno, M. Kawasaki, and K. Hiraga, Guinier-Preston zones observed by high-angle annular detector dark-field scanning transmission electron microscopy, Philos. Mag. Part B 81 (2001), pp. 1713–1724.
  • V.A. Phillips, Lattice resolution measurement of strain fields at Guinier-Preston zones in Al-3.0% Cu, Acta Metall. 21 (1973), pp. 219–228.
  • Y. Ando, K. Mihama, T. Takahashi, and Y. Kojima, Growth of Guinier-Preston zones and the θ″-phase in Al-4%Cu alloys, J. Cryst. Growth 24–25 (1974), pp. 581–584.
  • T. Sato, Y. Kojima, and T. Takahashi, Observations of the microstructure of Pre-precipitates in an Al–3%Cu alloy by a lattice imaging technique, Trans. Jpn. Inst. Met. 23 (1982), pp. 461–472.
  • N. Ajika, H. Endoh, H. Hashimoto, M. Tomita, and H. Yoshida, Interpretation of atomic-resolution electron microscope images of Guiner-Preston zones in aluminium-copper alloys, Philos. Mag. A 51 (1985), pp. 729–744.
  • H. Yoshida, D.J.H. Cockayne, and M.J. Whelan, A study of Guinier-Preston zones in aluminium-copper alloys using the weak-beam technique of electron microscopy, Philos. Mag. 34 (1976), pp. 89–100.
  • M. Karlı´k, B. Jouffrey, and S. Belliot, The copper content of Guinier–Preston (GP1) zones in Al–1.84 at.% Cu alloy, Acta Mater. 46 (1998), pp. 1817–1825.
  • M. Karlík and B. Jouffrey, High resolution electron microscopy study of Guinier-Preston (GP1) zones in Al–Cu based alloys, Acta Mater. 45 (1997), pp. 3251–3263.
  • M. Karlı´k, A. Bigot, B. Jouffrey, P. Auger, and S. Belliot, HREM, FIM and tomographic atom probe investigation of Guinier–Preston zones in an Al–1.54at% Cu alloy, Ultramicroscopy 98 (2004), pp. 219–230.
  • I.A. Bryukhanov and A.V. Larin, Mechanisms and rate of dislocation nucleation in aluminum-copper alloys near Guinier-Preston zones, J. Appl. Phys. 120 (2016), p. 235106.
  • C. Wolverton, First-principles prediction of equilibrium precipitate shapes in Al-Cu alloys, Philos. Mag. Lett. 79 (1999), pp. 683–690.
  • Y. Nakagami, H. Kimizuka, and S. Ogata, Controlling factors for the formation of Guinier-Preston zones in Al-Cu alloys: an atomistic study, J. Jpn. Inst. Met. 80 (2016), pp. 575–584.
  • A. Bigot, F. Danoix, P. Auger, D. Blavette, and A. Menand, 3D reconstruction and analysis of GP zones in Al-1.7Cu (at%): a tomographic atom probe investigation, Appl. Surf. Sci. 94–95 (1996), pp. 261–266.
  • M. Takeda, H. Oka, and I. Onaka, A new approach to the study of the GP (I) zone stability in Al–Cu alloy by means of extended Hiickel molecular orbital calculations, Phys. Status Solidi A 132 (1992), pp. 305–322.
  • M. Takeda, Y. Nagura, A. Igarashi, and T. Endo, Copper concentration inside Guinier-Preston I zones formed in an Al–Cu alloy, Z. Für Met. 93 (2002), pp. 204–207.
  • J. Wang, C. Wolverton, S. Müller, Z.-K. Liu, and L.-Q. Chen, First-principles growth kinetics and morphological evolution of Cu nanoscale particles in Al, Acta Mater. 53 (2005), pp. 2759–2764.
  • V. Gerold, On the structures of Guinier-Preston zones in AlCu alloys introductory paper, Scr. Metall. 22 (1988), pp. 927–932.
  • T. Sato and A. Kamio, High resolution electron microscopy of phase decomposition microstructures in aluminium-based alloys, Mater. Sci. Eng. A 146 (1991), pp. 161–180.
  • B. Schönfeld, Local atomic arrangements in binary alloys, Prog. Mater. Sci. 44 (1999), pp. 435–543.
  • S.P. Ringer and K. Hono, Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies, Mater. Charact. 44 (2000), pp. 101–131.
  • S.-K. Son, M. Takeda, K.-S. Park … C.-Y. Kang, A quantitative study of precipitation of metastable phases in an Al-1.94 at%Cu alloy during isothermal aging at 373 K. Mater. Trans 47 (2006), pp. 3001–3006.
  • T. Hamaoka, C.-Y. Jao, X. Zhang, Y. Oshima, and M. Takeguchi, Three-dimensional characterization of Guinier–Preston zones in an Al–Cu alloy using depth-sectioning technique, Microscopy 66 (2017), pp. 78–88.
  • Y. Satoh, H. Matsui, and T. Hamaoka, Effects of impurities on one-dimensional migration of interstitial clusters in iron under electron irradiation, Phys. Rev. B 77 (2008), p. 993.
  • Y. Mishin, M.J. Mehl, and D.A. Papaconstantopoulos, Phase stability in the Fe–Ni system: investigation by first-principles calculations and atomistic simulations, Acta Mater. 53 (2005), pp. 4029–4041.
  • F. Apostol and Y. Mishin, Interatomic potential for the Al-Cu system, Phys. Rev. B 83 (2011), p. 211.
  • [39] NIST Interatomic Potentials Repository. http://www.ctcms.nist.gov/potentials.
  • A.Y. Kuksin and A.V. Yanilkin, Dislocation nucleation and motion in metals and alloys at high-rate deformation: molecular dynamic simulation, Mech. Solids 50 (2015), pp. 44–51.
  • C.V. Singh and D.H. Warner, Mechanisms of Guinier–Preston zone hardening in the athermal limit, Acta Mater. 58 (2010), pp. 5797–5805.
  • C.V. Singh, A.J. Mateos, and D.H. Warner, Atomistic simulations of dislocation–precipitate interactions emphasize importance of cross-slip, Scr. Mater. 64 (2011), pp. 398–401.
  • C.V. Singh and D.H. Warner, An atomistic-based hierarchical multiscale examination of age hardening in an Al-Cu alloy, Metall. Mater. Trans. A 44 (2013), pp. 2625–2644.
  • K. Joshi and S. Chaudhuri, Empirical force field-based kinetic Monte Carlo simulation of precipitate evolution and growth in Al–Cu alloys, Model. Simul. Mater. Sci. Eng. 24 (2016), p. 075012.
  • C. Pryor, J. Kim, L.W. Wang, A.J. Williamson, and A. Zunger, Comparison of two methods for describing the strain profiles in quantum dots, J. Appl. Phys. 83 (1998), pp. 2548–2554.
  • E.J. Kirkland, Advanced Computing in Electron Microscopy, 2nd ed., Springer, New York, 2010.
  • T. Hamaoka, A. Hashimoto, K. Mitsuishi, and M. Takeguchi, 4D-data acquisition in scanning confocal electron microscopy for depth-sectioned imaging, E-J. Surf. Sci. Nanotechnol. 16 (2018), pp. 247–252.
  • L.-M. Peng, G. Ren, S.L. Dudarev, and M.J. Whelan, Robust parameterization of elastic and absorptive electron atomic scattering factors, Acta Crystallogr. Sect. A 52 (1996), pp. 257–276.
  • L.-M. Peng, G. Ren, S.L. Dudarev, and M.J. Whelan, Debye–Waller factors and absorptive scattering factors of elemental crystals, Acta Crystallogr. Sect. A 52 (1996), pp. 456–470.
  • P.D. Nellist, The principles of STEM imaging, in Scanning Transmission Electron Microscopy: Imaging and Analysis, S.J. Pennycook and P.D. Nellist, eds., Springer New York, New York, 2011, pp. 91–115.
  • H. Sawada, T. Tomita, M. Naruse, T. Honda, P. Hambridge, P. Hartel, M. Haider, C. Hetherington, R. Doole, A. Kirkland,J. Hutchison, J. Titchmarsh, and D. Cockayne, Experimental evaluation of a spherical aberration-corrected TEM and STEM, J. Electron Microsc. 54 (2005), pp. 119–121.
  • H. Sawada, T. Sasaki, F. Hosokawa, S. Yuasa, M. Terao, M. Kawazoe, T. Nakamichi, T. Kaneyama, Y. Kondo, K. Kimoto, and K. Suenaga, Correction of higher order geometrical aberration by triple 3-fold astigmatism field, J. Electron Microsc. 58 (2009), pp. 341–347.
  • F. Hosokawa, H. Sawada, Y. Kondo, K. Takayanagi and K. Suenaga, Development of Cs and Cc correctors for transmission electron microscopy, Microscopy 62 (2013), pp. 23–41.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.