466
Views
8
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A dislocation-based stress-strain gradient plasticity model for strength and ductility in materials with gradient microstructures

, &
Pages 2896-2916 | Received 17 Apr 2018, Accepted 03 Aug 2018, Published online: 07 Sep 2018

References

  • T. Balusamy, T.S. Narayanan, K. Ravichandran, I.S. Park, and M.H. Lee, Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel, Corros. Sci. 74 (2013), pp. 332–344. doi: 10.1016/j.corsci.2013.04.056
  • R. Grange, Effect of microstructural banding in steel, Metall. Trans. 2 (1971), pp. 417–426. doi: 10.1007/BF02663328
  • T. Hufnagel, C. Fan, R. Ott, J. Li, and S. Brennan, Controlling shear band behavior in metallic glasses through microstructural design, Intermetallics 10 (2002), pp. 1163–1166. doi: 10.1016/S0966-9795(02)00157-7
  • D.G. Morris, The origins of strengthening in nanostructured metals and alloys, Rev. Metal. Madrid. 46 (2010), pp. 173–186. doi: 10.3989/revmetalm.1008
  • K. Zhu, A. Vassel, F. Brisset, K. Lu, and J. Lu, Nanostructure formation mechanism of alpha titanium using SMAT, Acta Mater. 52 (2004), pp. 4101–4110. doi: 10.1016/j.actamat.2004.05.023
  • Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, and Y.T. Zhu, Simultaneously increasing the ductility and strength of nanostructured alloys, Adv. Mater. 18 (2006), pp. 2280–2283. doi: 10.1002/adma.200600310
  • X. Chen, Z. Han, X. Li, and K. Lu, Lowering coefficient of friction in Cu alloys with stable gradient nanostructures, Sci. Adv. 2 (2016), pp. e1601942–e1601942. doi: 10.1126/sciadv.1601942
  • H. Lyu, M. Hamid, A. Ruimi, and H.M. Zbib, Stress/strain gradient plasticity model for size effects in heterogeneous nano-microstructures, Int. J. Plast. (2017), pp. 1–18.
  • Y. Huang, S. Qu, K. Hwang, M. Li, and H. Gao, A conventional theory of mechanism-based strain gradient plasticity, Int. J. Plast. 20 (2004), pp. 753–782. doi: 10.1016/j.ijplas.2003.08.002
  • H.T. Zhu, H. Zbib, and E. Aifantis, Strain gradients and continuum modeling of size effect in metal matrix composites, Acta Mech. 121, pp. 165–176. doi: 10.1007/BF01262530
  • H. Lyu, A. Ruimi, and H.M. Zbib, A dislocation-based model for deformation and size effect in multi-phase steels, Int. J. Plast. 72 (2015), pp. 44–59. doi: 10.1016/j.ijplas.2015.05.005
  • T. Ohashi, Crystal plasticity analysis of dislocation emission from micro voids, Int. J. Plasticity 21 (2007), pp. 2071–2088. doi: 10.1016/j.ijplas.2005.03.018
  • S.S. Chakravarthy, and W. Curtin, Stress-gradient plasticity, Proc. Natil. Acad. Sci. USA. 38 (2011), pp. 15716–15720. doi: 10.1073/pnas.1107035108
  • N. Taheri-Nassaj, and H.M. Zbib, On dislocation pileups and stress-gradient dependent plastic flow, Int. J. Plast. 74 (2015), pp. 1–16. doi: 10.1016/j.ijplas.2015.06.001
  • D. Liu, Y. He, B. Zhang, and L. Shen, A continuum theory of stress gradient plasticity based on the dislocation pile-up model, Acta. Mater. 80 (2014), pp. 350–364. doi: 10.1016/j.actamat.2014.07.043
  • H. Luo, J. Sietsma, and S. Van Der Zwaag, A novel observation of strain-induced ferrite-to-austenite retransformation after intercritical deformation of C-Mn steel, Metall. Mater. Trans. A. 35 (2004), pp. 2789–2797. doi: 10.1007/s11661-004-0225-2
  • D. Li, H. Zbib, X. Sun, and M. Khaleel, Predicting plastic flow and irradiation hardening of iron single crystal with mechanism-based continuum dislocation dynamics, Int. J. Plast. 52 (2014), pp. 3–17. doi: 10.1016/j.ijplas.2013.01.015
  • S.A. Kim, and W.L. Johnson, Elastic constants and internal friction of martensitic steel, ferritic-pearlitic steel, and α-iron, Mater. Sci. Eng. A. 452-453 (2007), pp. 633–639. doi: 10.1016/j.msea.2006.11.147
  • M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe, Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta. Mater. 59 (2011), pp. 658–670. doi: 10.1016/j.actamat.2010.10.002
  • S. Queyreau, G. Monnet, and B. Devincre, Slip systems interactions in α-iron determined by dislocation dynamics simulations, Int. J. Plast. 25 (2009), pp. 361–377. doi: 10.1016/j.ijplas.2007.12.009
  • D. Terentyev, D. Bacon, and Y.N. Osetsky, Interaction of an edge dislocation with voids in α-iron modelled with different interatomic potentials, J. Phys.: Condens. Matter 20 (2008), pp. 445007–445007.
  • R. Lebenson, and C. Tomé, A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta. Metall. Mater. 41 (1993), pp. 2611–2624. doi: 10.1016/0956-7151(93)90130-K
  • R.A. Lebenson, and C. Tomé, A self-consistant visco-plastic model:calculation of rolling texture of anisotropic materials, Mater. Sci. Eng.: A. 175 (1994), pp. 71–82. doi: 10.1016/0921-5093(94)91047-2
  • E. Orowan, Problems of plastic gliding, Proc. Phys. Soc. 52 (1940), pp. 8–22. doi: 10.1088/0959-5309/52/1/303
  • P. Zhang, M. Karimpour, D. Balint, J. Lin, and D. Farrugia, A controlled Poisson Voronoi tessellation for grain and cohesive boundary generation applied to crystal plasticity analysis, Comput. Mater. Sci. 64 (2012), pp. 84–89. doi: 10.1016/j.commatsci.2012.02.022
  • H. Askari, J. Young, D. Field, G. Kridli, D. Li, and H. Zbib, A study of the hot and cold deformation of twin-roll cast magnesium alloy AZ31, Philos. Mag. 94 (2014), pp. 381–403. doi: 10.1080/14786435.2013.853884
  • Q. Wei, L. Kecskes, T. Jiao, K. Hartwig, K. Ramesh, and E. Ma, Adiabatic shear banding in ultrafine-grained Fe processed by severe plastic deformation, Acta Mater. 52 (2004), pp. 1859–1869. doi: 10.1016/j.actamat.2003.12.025
  • J.E. Bailey, and P.B. Hirsch, The dislocation distribution, flow stress, stored energy in cold worked polycrystalline silver, Philos. Mag. 5 (1960), pp. 485–497. doi: 10.1080/14786436008238300
  • J. Nye, Some geometrical relations in dislocated crystals, Acta Metall. 1 (1953), pp. 153–162. doi: 10.1016/0001-6160(53)90054-6
  • K. Shizawa, and H. Zbib, A thermodynamical theory of plastic spin and internal stress with dislocation density tensor, J. Eng. Mater. Tech. 121 (1999), pp. 247–253. doi: 10.1115/1.2812372
  • H. Lyu, N. Taheri-Nassaj, and H.M. Zbib, A multiscale gradient-dependent plasticity model for size effects, Philos. Mag. (2016), pp. 1–26.
  • X. Wu, N. Tao, Y. Hong, B. Xu, J. Lu, and K. Lu, Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP, Acta Mater. 50 (2002), pp. 2075–2084. doi: 10.1016/S1359-6454(02)00051-4
  • A. Jerusalem, W. Dickson, M. Jesus Perez Martin, M. Dao, J. Lu, and F. Galvez, Grain size gradient length scale in ballistic properties optimization of functionally graded nanocrystalline steel plates, Scr. Mater. 69 (2013), pp. 773–776. doi: 10.1016/j.scriptamat.2013.08.025
  • J. Li, G.J. Weng, S. Chen, and X. Wu, On strain hardening mechanism in gradient nanostructures, Int. J. Plast. 88 (2017), pp. 89–107. doi: 10.1016/j.ijplas.2016.10.003
  • X. Wu, P. Jiang, L. Chen, F. Yuan, and H.T. Zhu, Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. USA. 20 (2014), pp. 7197–7201. doi: 10.1073/pnas.1324069111
  • X. Xu, G. Mi, Y. Luo, P. Jiang, X. Shao, and C. Wang, Morphologies, microstructures, and mechanical properties of samples produced using laser metal deposition with 316 L stainless steel wire, Opt. Lasers. Eng. 94 (2017), pp. 1–11. doi: 10.1016/j.optlaseng.2017.02.008
  • X. Wu, and Y. Zhu, Heterogeneous materials: a new class of materials with unprecedented mechanical properties, Mater. Res. Lett. 5 (2017), pp. 1–19. doi: 10.1080/21663831.2016.1225321
  • S. Berbenni, V. Favier, and M. Berveiller, Impact of the grain size distribution on the yield stress of heterogeneous materials, Int. J. Plast. 23 (2007), pp. 114–142. doi: 10.1016/j.ijplas.2006.03.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.