883
Views
13
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Interplay between unconventional superconductivity and heavy-fermion quantum criticality: CeCu2Si2 versus YbRh2Si2

, , , , , , , , , , , , , , , , , , , , , , , , , , & show all
Pages 2930-2963 | Received 11 May 2018, Accepted 06 Aug 2018, Published online: 20 Aug 2018

References

  • P.A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insulator: Physics of high-temperature superconductivity, Rev. Modern Phys. 78 (2006), pp. 17–85. doi: 10.1103/RevModPhys.78.17
  • F. Steglich and S. Wirth, Foundations of heavy-fermion superconductivity: Lattice Kondo effect and Mott physics, Rep. Progr. Phys. 79 (2016), pp. 084502. doi: 10.1088/0034-4885/79/8/084502
  • L.D. Landau, The theory of a Fermi liquid, Sov. Phys. JETP 3 (1957), pp. 920. (translated from Theoret. Phys. USSR 30 (1956), pp. 1058).
  • H. von Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, Fermi-liquid instabilities at magnetic quantum phase transitions, Rev. Modern Phys. 79 (2007), pp. 1015–1075. doi: 10.1103/RevModPhys.79.1015
  • P. Gegenwart, Q. Si, and F. Steglich, Quantum criticality in heavy-fermion metals, Nature Phys. 4 (2008), pp. 186–197. doi: 10.1038/nphys892
  • J.A. Hertz, Quantum critical phenomena, Phys. Rev. B 14 (1976), pp. 1165–1184. doi: 10.1103/PhysRevB.14.1165
  • A.J. Millis, Effect of a nonzero temperature on quantum critical points in itinerant fermion systems, Phys. Rev. B 48 (1993), pp. 7183–7196. doi: 10.1103/PhysRevB.48.7183
  • T. Moriya and T. Takimoto, Anomalous properties around magnetic instability in heavy electron systems, J. Phys. Soc. Jpn. 64 (1995), pp. 960–969. doi: 10.1143/JPSJ.64.960
  • A. Schröder, G. Aeppli, R. Coldea, M. Adams, O. Stockert, H. von Löhneysen, E. Bucher, R. Ramazashvili, and P. Coleman, Onset of antiferromagnetism in heavy-fermion metals, Nature 407 (2000), pp. 351–355. doi: 10.1038/35030039
  • Q. Si, S. Rabello, K. Ingersent, and J.L. Smith, Locally critical quantum phase transitions in strongly correlated metals, Nature 413 (2001), pp. 804–808. doi: 10.1038/35101507
  • P. Coleman, C. Pépin, Q. Si, and R. Ramazashvili, How do Fermi liquids get heavy and die?, J. Phys. Condens. Matter. 13 (2001), pp. R723–R738. doi: 10.1088/0953-8984/13/35/202
  • T. Senthil, M. Vojta, and S. Sachdev, Weak magnetism and non-Fermi liquids near heavy-fermion critical points, Phys. Rev. B 69 (2004), pp. 035111. doi: 10.1103/PhysRevB.69.035111
  • H. Shishido, R. Settai, H. Harima, and Y. Ōnuki, A drastic change of the Fermi surface at a critical pressure in CeRhIn5: dHvA study under pressure, J. Phys. Soc. Jpn. 74 (2005), pp. 1103–1106. doi: 10.1143/JPSJ.74.1103
  • T. Park, F. Ronning, H.Q. Yuan, M.B. Salamon, R. Movshovich, J.L. Sarrao, and J.D. Thompson, Hidden magnetism and quantum criticality in the heavy fermion superconductor CeRhIn5, Nature 440 (2006), pp. 65–68. doi: 10.1038/nature04571
  • G. Knebel, D. Aoki, J.-P. Brison, and J. Flouquet, The quantum critical point in CeRhIn5: A resistivity study, J. Phys. Soc. Jpn. 77 (2008), pp. 114704. doi: 10.1143/JPSJ.77.114704
  • Z. Ren, L.V. Pourovski, G. Giriat, G. Lapertot, A. Georges, and D. Jaccard, Giant overlap between the magnetic and superconducting phases of CeAu2Si2 under pressure, Phys. Rev. X 4 (2014), pp. 031055.
  • O. Stockert, E. Faulhaber, G. Zwicknagl, N. Stuesser, H.S. Jeevan, M. Deppe, R. Borth, R. Küchler, M. Loewenhaupt, C. Geibel, and F. Steglich, Nature of the A phase in CeCu2Si2, Phys. Rev. Lett. 92 (2004), pp. 136401. doi: 10.1103/PhysRevLett.92.136401
  • J. Custers, P. Gegenwart, H. Wilhelm, K. Neumaier, Y. Tokiwa, O. Trovarelli, C. Geibel, F. Steglich, C. Pépin, and P. Coleman, The break-up of heavy electrons at a quantum critical point, Nature 424 (2003), pp. 524–527. doi: 10.1038/nature01774
  • G.M. Pang, M. Smidman, J.L. Zhang, L. Jiao, Z.F. Weng, E.M. Nica, Y. Chen, W.B. Jang, Y.J. Zhang, H.S. Jeevan, P. Gegenwart, F. Steglich, Q. Si, and H.Q. Yuan, Fully gapped d-wave superconductivity in CeCu2Si2, Proc. Natl. Acad. Sci. USA 115 (2018), pp. 5343–5347. doi: 10.1073/pnas.1720291115
  • E. Schuberth, M. Tippmann, L. Steinke, S. Lausberg, A. Steppke, M. Brando, C. Krellner, C. Geibel, R. Yu, Q. Si, and F. Steglich, Emergence of superconductivity in the canonical heavy-electron metal YbRh₂Si₂, Science 351 (2016), pp. 485–488. doi: 10.1126/science.aaa9733
  • F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, and H. Schäfer, Superconductivity in the presence of strong Pauli paramagnetism: CeCu2Si2, Phys. Rev. Lett. 43 (1979), pp. 1892–1896. doi: 10.1103/PhysRevLett.43.1892
  • See, e.g.A.J. Leggett, A theoretical description of the new phases of liquid 3He, Rev. Modern Phys. 47 (1975), pp. 331–414. doi: 10.1103/RevModPhys.47.331
  • P.W. Anderson, Heavy-electron superconductors, spin fluctuations, and triplet pairing, Phys. Rev. B 30 (1984), pp. 1549–1550. doi: 10.1103/PhysRevB.30.1549
  • K. Miyake, K. Schmitt-Rink, and C.M. Varma, Spin-fluctuation-mediated even-parity pairing in heavy-fermion superconductors, Phys. Rev. B 34 (1986), pp. 6554–6556. doi: 10.1103/PhysRevB.34.6554
  • D.J. Scalapino, E. Loh, and J. Hirsch, d-wave pairing near a spin-density-wave instability, Phys. Rev. B 34 (1986), pp. 8190–8192. doi: 10.1103/PhysRevB.34.8190
  • H. Spille, U. Rauchschwalbe, and F. Steglich, Superconductivity in CeCu2Si2: Dependence of Tc on alloying and stoichiometry. Helv. Phys. Acta 56 (1983), pp. 165-177.
  • B.T. Matthias, H. Suhl, and E. Corenzwit, Spin exchange in superconductors, Phys. Rev. Lett. 1 (1958), pp. 92–94. doi: 10.1103/PhysRevLett.1.92
  • A.A. Abrikosov and L.P. Gor’kov, On the problem of the Knight shift in superconductors. Sov. Phys. JETP 12 (1961), pp. 337–339. (translated from Zh. Experim. i Teor. Fiz. 39 (1960), pp. 480).
  • G. Adrian and H. Adrian, Lattice disorder effects on superconductivity and electrical resistivity of heavy-fermion CeCu2Si2-films, Europhys. Lett. 3 (1987), pp. 819–826. doi: 10.1209/0295-5075/3/7/008
  • U. Rauchschwalbe, W. Lieke, C.D. Bredl, F. Steglich, J. Aarts, K.M. Martini, and A.C. Mota, Critical fields of the “heavy-fermion” superconductor CeCu2Si2, Phys. Rev. Lett. 49 (1982), pp. 1448–1451. doi: 10.1103/PhysRevLett.49.1448
  • W. Assmus, M. Herrmann, U. Rauchschwalbe, S. Riegel, W. Lieke, H. Spille, S. Horn, G. Weber, F. Steglich, and G. Cordier, Superconductivity in CeCu2Si2 single crystals, Phys. Rev. Lett. 52 (1984), pp. 469–472. doi: 10.1103/PhysRevLett.52.469
  • G. Aeppli, D. Bishop, C. Broholm, E. Bucher, K. Siemensmeyer, M. Steiner, and N. Stüsser, Magnetic order in the different superconducting states of UPt3, Phys. Rev. Lett. 63 (1989), pp. 676–679. doi: 10.1103/PhysRevLett.63.676
  • M. Jourdan, M. Huth, and H. Adrian, Superconductivity mediated by spin fluctuations in the heavy-fermion compound UPd2Al3, Nature 398 (1999), pp. 47–49. doi: 10.1038/17977
  • N.K. Sato, N. Aso, K. Miyake, R. Shiina, P. Thalmeier, G. Varelogiannis, C. Geibel, F. Steglich, P. Fulde, and T. Komatsubara, Strong coupling between local moments and superconducting ‘heavy’ electrons in UPd2Al3, Nature 410 (2001), pp. 340–343. doi: 10.1038/35066519
  • P. Gegenwart, C. Langhammer, C. Geibel, R. Helfrich, M. Lang, G. Sparn, F. Steglich, R. Horn, L. Donnevert, A. Link, and W. Assmus, Breakup of heavy fermions on the brink of “phase A” in CeCu2Si2, Phys. Rev. Lett. 81 (1998), pp. 1501–1504. doi: 10.1103/PhysRevLett.81.1501
  • F. Steglich, P. Gegenwart, C. Geibel, P. Hinze, M. Lang, C. Langhammer, G. Sparn, T. Tayama, O. Trovarelli, N. Sato, T. Dahm, and G. Varelogiannis, More Is Different – Fifty Years of Condensed Matter Physics, N. P. Ong and R. N. Bhatt, eds., Princeton University Press, Princeton, 2001, pp. 191–210.
  • O. Stockert, D. Andreica, A. Amato, H.S. Jeevan, C. Geibel, and F. Steglich, Magnetic order and superconductivity in single-crystalline CeCu2Si2, Physica B 374–375 (2006), pp. 167–170. doi: 10.1016/j.physb.2005.11.043
  • O. Stockert, J. Arndt, E. Faulhaber, C. Geibel, H.S. Jeevan, S. Kirchner, M.K. Schmalzl, M. Loewenhaupt, K. Schmalzl, W. Schmidt, Q. Si, and F. Steglich, Magnetically driven superconductivity in CeCu2Si2, Nature Phys. 7 (2011), pp. 119–124. doi: 10.1038/nphys1852
  • J. Arndt, O. Stockert, K. Schmalzl, E. Faulhaber, H.S. Jeevan, C. Geibel, W. Schmidt, M. Loewenhaupt, and F. Steglich, Spin fluctuations in normal state CeCu2Si2 on approaching the quantum critical point, Phys. Rev. Lett. 106 (2011), pp. 246401. doi: 10.1103/PhysRevLett.106.246401
  • M. Eschrig, The effect of collective spin-1 excitations on electronic spectra in high- Tc superconductors, Adv. Phys. 55 (2006), pp. 47–183. doi: 10.1080/00018730600645636
  • H.F. Fong, B. Keimer, P.W. Anderson, D. Reznik, F. Doğan, and I.A. Aksay, Phonon and magnetic neutron scattering at 41 meV in YBa2Cu3O7, Phys. Rev. Lett. 75 (1995), pp. 316–319. doi: 10.1103/PhysRevLett.75.316
  • E.M. Nica, R. Yu, and Q. Si, Orbital-selective pairing and superconductivity in iron selenides, npj Quantum Materials 2 (2017), pp. 24. doi: 10.1038/s41535-017-0027-6
  • S. Onari, H. Kontani, and M. Sato, Structure of neutron scattering peaks in both s++-wave and s±-wave states of an iron pnictide superconductor, Phys. Rev. B 81 (2010), pp. 060504(R). doi: 10.1103/PhysRevB.81.060504
  • S. Onari and H. Kontani, Neutron inelastic scattering peak by dissipationless mechanism in the s++-wave state in iron-based superconductors, Phys. Rev. B 84 (2011), pp. 144518. doi: 10.1103/PhysRevB.84.144518
  • N. Bernhoeft, B. Roessli, N. Sato, N. Aso, A. Hiess, G.H. Lander, Y. Endoh, and T. Komatsubara, Magnetic fluctuations above and below Tc in the heavy fermion superconductor UPd2Al3, Physica B 259–261 (1999), pp. 614–620. doi: 10.1016/S0921-4526(98)00864-3
  • N. Bernhoeft, A. Hiess, N. Metoki, G.H. Lander, and B. Roessli, Magnetization dynamics in the normal and superconducting phases of UPd2Al3: II. Inferences on the nodal gap symmetry, J. Phys. Condens. Matter. 18 (2006), pp. 5961–5972. doi: 10.1088/0953-8984/18/26/015
  • I. Eremin, G. Zwicknagl, P. Thalmeier, and P. Fulde, Feedback spin resonance in superconducting CeCu2Si2 and CeCoIn5, Phys. Rev. Lett. 101 (2008), pp. 187001. doi: 10.1103/PhysRevLett.101.187001
  • S. Nishiyama, K. Miyake, and C.M. Varma, Superconducting transition temperatures for spin-fluctuation superconductivity: Application to heavy-fermion compounds, Phys. Rev. B 88 (2013), pp. 014510. doi: 10.1103/PhysRevB.88.014510
  • K. Ishida, Y. Kawasaki, K. Tabuchi, K. Kashima, Y. Kitaoka, K. Asayama, C. Geibel, and F. Steglich, Evolution from magnetism to unconventional superconductivity in a series of CexCu2Si2 compounds probed by Cu NQR, Phys. Rev. Lett. 82 (1999), pp. 5353–5356. doi: 10.1103/PhysRevLett.82.5353
  • K. Fujiwara, Y. Hata, K. Kobayashi, K. Miyoshi, J. Takeuchi, Y. Shimaoka, H. Kotegawa, T.C. Kobayashi, C. Geibel, and F. Steglich, High pressure NQR measurement in CeCu2Si2 up to sudden disappearance of superconductivity, J. Phys. Soc. Jpn. 77 (2008), pp. 123711. doi: 10.1143/JPSJ.77.123711
  • S. Kitagawa, T. Higuchi, M. Manago, T. Yamanaka, K. Ishida, H.S. Jeevan, and C. Geibel, Magnetic and superconducting properties of an S-type single-crystal CeCu2Si2 probed by 63Cu nuclear magnetic resonance and nuclear quadrupole resonance, Phys. Rev. B 96 (2017), pp. 134506. doi: 10.1103/PhysRevB.96.134506
  • J. Arndt, Wechselspiel von Magnetismus und Supraleitung im Schwere-Fermionen-System CeCu2Si2 Dissertation, Dr. rer. nat. diss., TU Dresden, 2011. Available at http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-33510.
  • H.A. Vieyra, Resistivity and thermal conductivity measurements on heavy-fermion superconductors in rotating magnetic fields, Dr. rer. nat. diss., TU Dresden, 2012. Available at http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-107550.
  • M.A. Tanatar, J. Paglione, C. Petrovic, and L. Taillefer, Anisotropic violation of the Wiedemann-Franz law at a quantum critical point, Science 316 (2007), pp. 1320–1322. doi: 10.1126/science.1140762
  • S. Kittaka, Y. Aoki, Y. Shimura, T. Sakakibara, S. Seiro, C. Geibel, F. Steglich, H. Ikeda, and K. Machida, Multiband superconductivity with unexpected deficiency of nodal quasiparticles in CeCu2Si2, Phys. Rev. Lett. 112 (2014), pp. 067002. doi: 10.1103/PhysRevLett.112.067002
  • R. Müller-Reisener, Diploma Thesis, TU Darmstadt, 1995.
  • T. Yamashita, T. Takenaka, Y. Tokiwa, J.A. Wilcox, Y. Mizukami, D. Terazawa, Y. Kasahara, S. Kittaka, T. Sakakibara, M. Konczykowski, S. Seiro, H.S. Jeevan, C. Geibel, C. Putzke, T. Ohishi, H. Ikeda, A. Carrington, T. Shibaushi, and Y. Matsuda, Fully gapped superconductivity with no sign change in the prototypical heavy-fermion CeCu2Si2, Sci. Adv. 3 (2017), pp. e1601667. doi: 10.1126/sciadv.1601667
  • H.A. Vieyra, N. Oeschler, S. Seiro, H.S. Jeevan, C. Geibel, D. Parker, and F. Steglich, Determination of gap symmetry from angle-dependent Hc2 measurements on CeCu2Si2, Phys. Rev. Lett. 106 (2011), pp. 207001. doi: 10.1103/PhysRevLett.106.207001
  • Y. De Wilde, J. Heil, A.G.M. Jansen, and P. Wyder, Determination of the gap anisotropyof heavy-fermion superconductors by point contacts, Physica C 235-240 (1994), pp. 1915–1916. doi: 10.1016/0921-4534(94)92179-2
  • F. Steglich, U. Ahlheim, J.J.M. Franse, N. Grewe, D. Rainer, and U. Rauchschwalbe, CeCu2Si2 and UPt3: Two different cases of heavy fermion superconductivity. J. Magn. Magn. Mat. 52 (1985), pp. 54–60. doi: 10.1016/0304-8853(85)90226-4
  • M. Enayat, Z. Sun, A. Maldonado, H. Suderow, S. Seiro, C. Geibel, S. Wirth, F. Steglich, and P. Wahl, Superconducting gap and vortex lattice of the heavy-fermion compound CeCu2Si2, Phys. Rev. B. 93 (2016), pp. 045123. doi: 10.1103/PhysRevB.93.045123
  • H. Ikeda, M. Suzuki, and R. Arita, Emergent loop-nodal s±-wave superconductivity in CeCu2Si2: Similarities to the iron-based superconductors, Phys. Rev. Lett. 114 (2015), pp. 147003. doi: 10.1103/PhysRevLett.114.147003
  • T. Takenaka, Y. Mizumaki, J.A. Wilcox, M. Konczykowski, S. Seiro, C. Geibel, Y. Tokiwa, Y. Kasahara, C. Putzke, Y. Matsuda, A. Carrington, and T. Shibauchi, Full-gap superconductivity robust against disorder in heavy-fermion CeCu2Si2, Phys. Rev. Lett. 119 (2017), pp. 077001. doi: 10.1103/PhysRevLett.119.077001
  • G. Zwicknagl and U. Pulst, CeCu2Si2: Renormalized band structure, quasiparticles and co-operative phenomena, Physica B 186-188 (1993), pp. 895–898. doi: 10.1016/0921-4526(93)90736-P
  • R. Prozorov and R.W. Giannetta, Magnetic penetration depth in unconventional superconductors, Supercond. Sci. Technol. 19 (2006), pp. R41–R67. doi: 10.1088/0953-2048/19/8/R01
  • Y. Li, M. Liu, Z. Fu, X. Chen, F. Yang, and Y.-F. Yang, Gap symmetry of the heavy fermion superconductor CeCu2Si2 at ambient pressure, Phys. Rev. Lett. 120 (2018), pp. 217001. doi: 10.1103/PhysRevLett.120.217001
  • Y. Bang and G.R. Stewart, Superconducting properties of the s±-wave state: Fe-based superconductors, J. Phys. Condens. Matter. 29 (2017), pp. 123003. doi: 10.1088/1361-648X/aa564b
  • R. Feyerherm, A. Amato, C. Geibel, F.N. Gygax, P. Hellmann, R.H. Heffner, D.E. MacLaughlin, R. Müller-Reisener, G.J. Nieuwenhuys, A. Schenck, and F. Steglich, Competition between magnetism and superconductivity in CeCu2Si2, Phys. Rev. B 56 (1997), pp. 699–710. doi: 10.1103/PhysRevB.56.699
  • Q. Si, R. Yu, and E. Abrahams, High-temperature superconductivity in iron pnictides and chalcogenides, Nature Reviews Materials 1 (2016), pp. 16017. doi: 10.1038/natrevmats.2016.17
  • P.W. Anderson, The Theory of Superconductivity in the High-Tc Cuprate Superconductors, Princeton University Press, Princeton, 1997.
  • D. Chakraborty, N. Kaushal, and A. Ghosal, Pairing theory for strongly correlated d-wave superconductors, Phys. Rev. B 96 (2017), pp. 134518. doi: 10.1103/PhysRevB.96.134518
  • A. Garg, M. Randeria, and N. Trivedi, Strong correlations make high-temperature superconductors robust against disorder, Nature Phys. 4 (2008), pp. 762–765. doi: 10.1038/nphys1026
  • H. Alloul, J. Bobroff, M. Gay, and P.J. Hirschfeld, Defects in correlated metals and superconductors, Rev. Modern Phys. 81 (2009), pp. 45–108. doi: 10.1103/RevModPhys.81.45
  • U. Ahlheim, M. Winkelmann, C. Schank, C. Geibel, F. Steglich, and A.L. Giorgi, Influence of Th substitution in the heavy fermion superconductor CeCu2Si2, Physica B 163 (1990), pp. 391–394. doi: 10.1016/0921-4526(90)90221-F
  • H.Q. Yuan, F.M. Grosche, M. Deppe, C. Geibel, and F. Steglich, Observation of two distinct superconducting phases in CeCu2Si2, Science 302 (2003), pp. 2104–2107. doi: 10.1126/science.1091648
  • K. Miyake, O. Narikiyo, and Y. Onishi, Superconductivity of Ce-based heavy fermions under pressure: Valence fluctuation mediated pairing associated with valence instability of Ce, Physica B 259-261 (1999), pp. 676–677. doi: 10.1016/S0921-4526(98)00754-6
  • A.T. Holmes, D. Jaccard, and K. Miyake, Signatures of valence fluctuations in CeCu2Si2 under high pressure, Phys. Rev. B 69 (2004), pp. 024508. doi: 10.1103/PhysRevB.69.024508
  • S. Ernst, S. Kirchner, C. Krellner, C. Geibel, G. Zwicknagl, F. Steglich, and S. Wirth, Emerging local Kondo screening and spatial coherence in the heavy-fermion metal YbRh2Si2, Nature 474 (2011), pp. 362–366. doi: 10.1038/nature10148
  • U. Köhler, N. Oeschler, F. Steglich, S. Maquilon, and Z. Fisk, Energy scales of Lu1-xYbxRh2Si2 by means of thermopower investigations, Phys. Rev. B 77 (2008), pp. 104412. doi: 10.1103/PhysRevB.77.104412
  • K. Ishida, D.E. MacLaughlin, B.-L. Young, K. Okamoto, Y. Kawasaki, Y. Kitaoka, G.J. Niewenhuys, R.H. Heffner, O.O. Bernal, W. Higemoto, A. Koda, R. Kadono, O. Trovarelli, C. Geibel, and F. Steglich, Low-temperature magnetic order and spin dynamics in YbRh2Si2, Phys. Rev. B 68 (2003), pp. 184401. doi: 10.1103/PhysRevB.68.184401
  • O. Trovarelli, C. Geibel, S. Mederle, C. Langhammer, F.M. Grosche, P. Gegenwart, M. Lang, G. Sparn, and F. Steglich, Ybrh2si2: Pronounced non-Fermi-liquid effects above a low-lying magnetic phase transition, Phys. Rev. Lett. 85 (2000), pp. 626–629. doi: 10.1103/PhysRevLett.85.626
  • P. Gegenwart, T. Westerkamp, C. Krellner, Y. Tokiwa, S. Paschen, C. Geibel, F. Steglich, E. Abrahams, and Q. Si, Multiple energy scales at a quantum critical point, Science 315 (2007), pp. 969–971. doi: 10.1126/science.1136020
  • P. Gegenwart, J. Custers, C. Geibel, K. Neumaier, T. Tayama, K. Tenya, O. Trovarelli, and F. Steglich, Magnetic-field induced quantum critical point in YbRh2Si2, Phys. Rev. Lett. 89 (2002), pp. 056402. doi: 10.1103/PhysRevLett.89.056402
  • C. Krellner, S. Taube, T. Westerkamp, Z. Hossain, and C. Geibel, Single-crystal growth of YbRh2Si2 and YbIr2Si2, Phil. Mag. 92 (2012), pp. 2508–2523. doi: 10.1080/14786435.2012.669066
  • S. Friedemann, N. Oeschler, S. Wirth, C. Krellner, C. Geibel, F. Steglich, S. Paschen, S. Kirchner, and Q. Si, Fermi-surface collapse and dynamical scaling near a quantum-critical point, Proc. Natl. Acad. Sci. USA 107 (2010), pp. 14547–14551. doi: 10.1073/pnas.1009202107
  • S. Paschen, T. Lühmann, S. Wirth, P. Gegenwart, O. Trovarelli, C. Geibel, F. Steglich, P. Coleman, and Q. Si, Hall-effect evolution across a heavy-fermion quantum critical point, Nature 432 (2004), pp. 881–885. doi: 10.1038/nature03129
  • H. Pfau, S. Hartmann, U. Stockert, P. Sun, S. Lausberg, M. Brando, S. Friedemann, C. Krellner, C. Geibel, S. Wirth, S. Kirchner, E. Abrahams, Q. Si, and F. Steglich, Thermal and electrical transport across a magnetic quantum critical point, Nature 484 (2012), pp. 493–497. doi: 10.1038/nature11072
  • F. Steglich, H. Pfau, S. Lausberg, S. Hamann, P. Sun, U. Stockert, M. Brando, S. Friedemann, C. Krellner, C. Geibel, S. Wirth, S. Kirchner, E. Abrahams, and Q. Si, Evidence of a Kondo destroying quantum critical point in YbRh2Si2, J. Phys. Soc. Jpn. 83 (2014), pp. 061001. doi: 10.7566/JPSJ.83.061001
  • S. Paschen, S. Friedemann, S. Wirth, F. Steglich, S. Kirchner, and Q. Si, Kondo destruction in heavy fermion quantum criticality and the photoemission spectrum of YbRh2Si2, J. Magn. Magn. Mat. 400 (2016), pp. 17–22. doi: 10.1016/j.jmmm.2015.09.008
  • T. Senthil, Critical Fermi surfaces and non-Fermi liquid metals, Phys. Rev. B 78 (2008), pp. 035103. doi: 10.1103/PhysRevB.78.035103
  • K. Kummer, S. Patil, A. Chikina, M. Güttler, M. Höppner, A. Generalov, S. Danzenbächer, S. Seiro, A. Hannaske, C. Krellner, Y. Kucherenko, M. Shi, M. Radovic, E. Rienks, G. Zwicknagl, K. Matho, J.W. Allen, C. Laubschat, C. Geibel, and D.V. Vyalikh, Temperature-independent Fermi surface in the Kondo lattice YbRh2Si2, Phys. Rev. X 5 (2015), pp. 011028.
  • Q.Y. Chen, D.F. Xu, X.H. Niu, J. Jiang, R. Peng, H.C. Xu, C.H.P. Wen, Z.F. Ding, K. Huang, L. Shu, Y.J. Zhang, H. Lee, V.N. Strocov, M. Shi, F. Bisti, T. Schmitt, Y.B. Huang, P. Dudin, X.C. Lai, S. Kirchner, H.Q. Yuan, and D.L. Feng, Direct observation of how the heavy-fermion state develops in CeCoIn5, Phys. Rev. B 96 (2017), pp. 045107. doi: 10.1103/PhysRevB.96.045107
  • Q.Y. Chen, D.F. Xu, X.H. Niu, R. Peng, H.C. Xu, C.H.P. Wen, X. Liu, L. Shu, S.Y. Tan, X.C. Lai, Y.J. Zhang, H. Lee, V.N. Strocov, F. Bisti, P. Dudin, J.-X. Zhu, H.Q. Yuan, S. Kirchner, and D.L. Feng, Band dependent interlayer f-electron hybridization in CeRhIn5, Phys. Rev. Lett. 120 (2018), pp. 066403. doi: 10.1103/PhysRevLett.120.066403
  • Y. Machida, K. Tomokuni, K. Izawa, G. Lapertot, G. Knebel, J.-P. Brison, and J. Flouquet, Verification of the Wiedemann-Franz law in YbRh2Si2 at a quantum critical point, Phys. Rev. Lett. 110 (2013), pp. 236402. doi: 10.1103/PhysRevLett.110.236402
  • J.-Ph. Reid, M.A. Tanatar, R. Daou, R. Hu, C. Petrovic, and L. Taillefer, Wiedemann-Franz law and nonvanishing temperature scale across the field-tuned quantum critical point of YbRh2Si2, Phys. Rev. B 89 (2014), pp. 045130. doi: 10.1103/PhysRevB.89.045130
  • A. Pourret, D. Aoki, M. Boukahil, J.-P. Brison, W. Knafo, G. Knebel, S. Raymond, M. Taupin, Y. Ōnuki, and J. Flouquet, Quantum criticality and Lifshitz transition in the Ising system CeRu2Si2: Comparison with YbRh2Si2, J. Phys. Soc. Jpn. 83 (2014), pp. 061002. doi: 10.7566/JPSJ.83.061002
  • M. Taupin, G. Knebel, T.D. Matsuda, G. Lapertot, Y. Machida, K. Izawa, J.-P. Brison, and J. Flouquet, Thermal conductivity through the quantum critical point in YbRh2Si2 at very low temperature, Phys. Rev. Lett. 115 (2015), pp. 046402. doi: 10.1103/PhysRevLett.115.046402
  • In [97] the same data are presented as by Pourret et al. [96], however without citing them.
  • H. Pfau, R. Daou, S. Lausberg, H.R. Naren, M. Brando, S. Friedemann, S. Wirth, T. Westerkamp, U. Stockert, P. Gegenwart, C. Krellner, C. Geibel, G. Zwicknagl, and F. Steglich, Interplay between Kondo suppression and Lifshitz transitions in YbRh2Si2 at high magnetic fields, Phys. Rev. Lett. 110 (2013), pp. 256403. doi: 10.1103/PhysRevLett.110.256403
  • P. Wölfle, Dynamic equilibrium of collective degrees of freedom in strongly correlated quantum matter, J. Phys. Conf. Series 568 (2014), pp. 042034. doi: 10.1088/1742-6596/568/4/042034
  • Integrating out off-shell electronic states leads to a vertex between an electron on the generic part of the Fermi surface (i.e. away from the hot spots), and energy fluctuations to be 1/z, where z is the quasiparticle residue, much weaker than the (1/z),3 singularity assumed in [98]. Q. Si to be published.
  • J. Sichelschmidt, V.A. Ivanshin, J. Ferstl, C. Geibel, and F. Steglich, Low temperature electron spin resonance of the Kondo ion in a heavy fermion metal: YbRh2Si2, Phys. Rev. Lett. 91 (2003), pp. 156401. doi: 10.1103/PhysRevLett.91.156401
  • P. Gegenwart, J. Custers, Y. Tokiwa, C. Geibel, and F. Steglich, Ferromagnetic quantum critical fluctuations in YbRh2(Si0.95Ge0.05)2, Phys. Rev. Lett. 94 (2005), pp. 076402. doi: 10.1103/PhysRevLett.94.076402
  • A.P. Pikul, U. Stockert, A. Steppke, T. Cichorek, S. Hartmann, N. Caroca-Canales, N. Oeschler, M. Brando, C. Geibel, and F. Steglich, Single-ion Kondo scaling of the coherent Fermi liquid regime in Ce1−x Lax Ni2Ge2. Phys. Rev. Lett. 108 (2012), pp. 066405. doi: 10.1103/PhysRevLett.108.066405
  • P. Sun and F. Steglich, Nernst effect: Evidence of local Kondo scattering in heavy fermions, Phys. Rev. Lett. 110 (2013), pp. 216408. doi: 10.1103/PhysRevLett.110.216408
  • B. Cornut and B. Coqblin, Influence of the crystalline field on the Kondo effect of alloys and compounds with cerium impurities, Phys. Rev. B 5 (1972), pp. 4541–4561. doi: 10.1103/PhysRevB.5.4541
  • G. Zwicknagl, Quasi-particles in heavy fermion systems, Adv. Phys. 41 (1992), pp. 203–302. doi: 10.1080/00018739200101503
  • P. Aynajian, E.H. da Silva Neto, A. Gyenis, R.E. Baumbach, J.D. Thompson, Z. Fisk, E.D. Bauer, and A. Yazdani, Visualizing heavy fermions emerging in a quantum critical Kondo lattice, Nature 486 (2012), pp. 201–206. doi: 10.1038/nature11204
  • E. Lengyel, M. Nicklas, H.S. Jeevan, C. Geibel, and F. Steglich, Pressure tuning of the interplay of magnetism and superconductivity in CeCu2Si2, Phys. Rev. Lett. 107 (2011), pp. 057001. doi: 10.1103/PhysRevLett.107.057001
  • C. Krellner, S. Hartmann, A. Pikul, N. Oeschler, J.G. Donath, C. Geibel, F. Steglich, and J. Wosnitza, Violation of critical universality at the antiferromagnetic phase transition of YbRh2Si2, Phys. Rev. Lett. 102 (2009), pp. 196402. doi: 10.1103/PhysRevLett.102.196402
  • M.L. Sutherland, E.C.T. O’Farrell, W.H. Toews, J. Dunn, K. Kuga, S. Nakatsuji, Y. Machida, K. Izawa, and R.W. Hill, Intact quasiparticles at an unconventional quantum critical point, Phys. Rev. B 92 (2015), pp. 041114(R). doi: 10.1103/PhysRevB.92.041114
  • S. Nakatsuji, K. Kuga, Y. Machida, T. Tayama, T. Sakakibara, Y. Karaki, H. Ishimoto, S. Yonezawa, Y. Maeno, E. Pearson, G.G. Lonzarich, L. Balicas, H. Lee, and Z. Fisk, Superconductivity and quantum criticality in the heavy-fermion system β-YbAlB4, Nature Phys. 4 (2008), pp. 603–607. doi: 10.1038/nphys1002
  • J.K. Dong, Y. Tokiwa, S.L. Bud’ko, P.C. Canfield, and P. Gegenwart, Anomalous reduction of the Lorenz ratio at the quantum critical point in YbAgGe, Phys. Rev. Lett. 110 (2013), pp. 176402. doi: 10.1103/PhysRevLett.110.176402
  • H.V. Löhneysen, T. Pietrus, G. Portisch, H.G. Schlager, A. Schröder, M. Sieck, and T. Trappmann, Non-Fermi-liquid behavior in a heavy-fermion alloy at a magnetic instability, Phys. Rev. Lett. 72 (1994), pp. 3262–3265. doi: 10.1103/PhysRevLett.72.3262

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.