192
Views
3
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Anisotropy of mechanical and thermal properties of perovskite LaYbO3: first-principles calculations

, &
Pages 2917-2929 | Received 09 Dec 2017, Accepted 09 Aug 2018, Published online: 23 Aug 2018

References

  • D.R. Clarke and S.R. Phillpot, Thermal barrier coating materials, Mater. Today 8 (2005), pp. 22–29. doi: 10.1016/S1369-7021(05)70934-2
  • X. Cao, Application of rare earths in thermal barrier coating materials, J. Mater. Sci. Technol. 23 (2007), pp. 15–35. doi: 10.1179/174328407X154392
  • M.R. Winter and D.R. Clarke, Oxide materials with low thermal conductivity, J. Am. Ceram. Soc. 90 (2007), pp. 533–540. doi: 10.1111/j.1551-2916.2006.01410.x
  • W. Pan, S.R. Phillpot, C. Wan, A. Chernatynskiy, and Z. Qu, Low thermal conductivity oxides, MRS Bull. 37 (2012), pp. 917–922. doi: 10.1557/mrs.2012.234
  • J. Fergus, Zirconia and pyrochlore oxides for thermal barrier coatings in gas turbine engines, Metall. Mater. Trans. E. 1 (2014), pp. 118–131.
  • J. Yang, Y. Han, M. Shahida, W. Pan, M. Zhao, W.J. Wu, and C.L. Wan, A promising material for thermal barrier coating: Pyrochlore-related compound Sm2FeTaO7, Scripta Mater. 149 (2018), pp. 49–52. doi: 10.1016/j.scriptamat.2018.02.005
  • N.P. Padture, Advanced structural ceramics in aerospace propulsion, Nat. Mater. 15 (2016), pp. 804–809. doi: 10.1038/nmat4687
  • J.S. Van Sluytman, S. Krämer, V.K. Tolpygo, and C.G. Levi, Microstructure evolution of ZrO2 –YbTaO4 thermal barrier coatings, Acta Mater. 96 (2015), pp. 133–142. doi: 10.1016/j.actamat.2015.06.007
  • J. Wang, X. Chong, R. Zhou, and J. Feng, Microstructure and thermal properties of RETaO4 (RE = Nd, Eu, Gd, Dy, Er, Yb, Lu) as promising thermal barrier coating materials, Scripta Mater. 126 (2017), pp. 24–28. doi: 10.1016/j.scriptamat.2016.08.019
  • J. Wang, Y. Zhou, X. Chong, R. Zhou, and J. Feng, Microstructure and thermal properties of a promising thermal barrier coating: YTaO4, Ceram. Int. 42 (2016), pp. 13876–13881. doi: 10.1016/j.ceramint.2016.05.194
  • H. Lu, C. Wang, Y. Huang, and H. Xie, Multi-enhanced-phonon scattering modes in Ln-Me-A sites co-substituted LnMeA11O19 ceramics, Sci. Rep. 4 (2015), 6823, pp. 1–7.
  • H. Lu, C. Wang, C. Zhang, and S. Tong, Thermo-physical properties of rare-earth hexaaluminates LnMgAl11O19 (Ln: La, Pr, Nd, Sm, Eu and Gd) magnetoplumbite for advanced thermal barrier coatings, J. Eur. Ceram. Soc. 35 (2015), pp. 1297–1306. doi: 10.1016/j.jeurceramsoc.2014.10.030
  • P.G. Klemens and N.P. Padture, Low thermal conductivity in garnets, J. Am. Ceram. Soc. 80 (1997), pp. 1018–1020.
  • E. Ruiz-Trejo, Atomistic simulation of defects and ion migration in LaYO3, Solid State Ionics. 123 (1999), pp. 121–129. doi: 10.1016/S0167-2738(99)00092-2
  • E. Ruiz-Trejo, Deuterium conductivity, diffusion and implantation in Sr-doped LaYO3, Solid State Ionics 130 (2000), pp. 313–324. doi: 10.1016/S0167-2738(00)00663-9
  • K. Ito, K. Tezuka, and Y. Hinatsu, Preparation, magnetic susceptibility, and specific heat on interlanthanide perovskites ABO3 (A=La–Nd, B=Dy–Lu), J. Solid State Chem. 157 (2001), pp. 173–179. doi: 10.1006/jssc.2000.9071
  • Y. Obukuro, K. Ninomiya, M. Arai, Y. Okuyama, G. Sakai, and S. Matsushima, First-principles study on LaYbO 3 as the localized f electrons containing system with MBJ–LDA + U approach, Comp. Mater. Sci. 126 (2017), pp. 7–11. doi: 10.1016/j.commatsci.2016.09.005
  • M. Dietrich, R. Vaßen, and D. Stöver, LaYbO3, a candidate for thermal barrier coating materials, 27th International Cocoa Beach Conference on Advanced Ceramics and Composites: A, 2003, pp. 637–643.
  • R.L. Moreira, A. Feteira, and A. Dias, Raman and infrared spectroscopic investigations on the crystal structure and phonon modes of LaYbO3 ceramics, J. Phys.: Condens. Matter 17 (2005), pp. 2775–2781.
  • A. Feteira, L.J. Gillie, R. Elsebrock, and D.C. Sinclair, Crystal structure and dielectric properties of LaYbO3, J. Am. Ceram. Soc. 90 (2007), pp. 1475–1482. doi: 10.1111/j.1551-2916.2007.01549.x
  • M. Bharathy, A.H. Fox, S.J. Mugavero, and H.C. Zur Loye, Crystal growth of inter-lanthanide LaLn'O3 (Ln'=Y, Ho–Lu) perovskites from hydroxide fluxes, Solid State Sci. 11 (2009), pp. 651–654. doi: 10.1016/j.solidstatesciences.2008.10.005
  • J. Varghese, T. Joseph, M.T. Sebastian, N. Reeves-McLaren, and A. Feteira, Crystal structure and microwave dielectric properties of LaLuO3 ceramics, J. Am. Ceram. Soc. 93 (2010), pp. 2960–2963. doi: 10.1111/j.1551-2916.2010.03930.x
  • C. Artini, G.A. Costa, M.M. Carnasciali, and R. Masini, Stability field and structural properties of intra-rare earth perovskites, J. Alloys Compd. 494 (2010), pp. 336–339. doi: 10.1016/j.jallcom.2010.01.030
  • W. Su, L. Yang, and B. Li, Optical properties and thermal stability of LaYbO3 ternary oxide for high-k dielectric application, Appl. Surf. Sci. 257 (2011), pp. 2526–2530. doi: 10.1016/j.apsusc.2010.10.016
  • T. Sakai, K. Isa, M. Matsuka, T. Kozai, Y. Okuyama, T. Ishihara, and H. Matsumoto, Electrochemical hydrogen pumps using Ba doped LaYbO3 type proton conducting electrolyte, Int. J. Hydrogen Energy. 38 (2013), pp. 6842–6847. doi: 10.1016/j.ijhydene.2013.03.050
  • G. Vasta, A. Feteira, D.I. Woodward, D. Walker, P.A. Thomas, and T.J. Jackson, Thin film LaYbO3 capacitive structures grown by pulsed laser deposition, Thin Solid Films. 527 (2013), pp. 81–86. doi: 10.1016/j.tsf.2012.12.006
  • A. Cabrera Ramírez, F.E. Charry Pastrana, J. Roa Rojas, D.A. Landinez Tellez, and F. Fajardo, Synthesis, structural and morphological characterization of the perovskite LaYbO3, J. Phys.: Conf. Ser. 687 (2016), pp. 1–4.
  • M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, P.J. Hasnip, S.J. Clark, and M.C. Payne, First-principles simulation: Ideas, illustrations and the CASTEP code, J. Phys.: Condens. Matter. 14 (2002), pp. 2717–2744.
  • J. Yang, M. Shahid, M. Zhao, J. Feng, C. Wan, and W. Pan, Physical properties of La2B2O7 (B= Zr, Sn, Hf and Ge) pyrochlore: First-principles calculations, J. Alloys Compd. 663 (2016), pp. 834–841. doi: 10.1016/j.jallcom.2015.12.189
  • J. Yang, J. Feng, M. Zhao, X. Ren, and W. Pan, Electronic structure, mechanical properties and anisotropy of thermal conductivity of Y-Si-O-N quaternary crystals, Comp. Mater. Sci. 109 (2015), pp. 231–239.
  • J. Yang, M. Shahid, C. Wan, F. Jing, and W. Pan, Anisotropy in elasticity, sound velocities and minimum thermal conductivity of zirconia from first-principles calculations, J. Eur. Ceram. Soc. 37 (2017), pp. 689–695. doi: 10.1016/j.jeurceramsoc.2016.08.034
  • G. Grimvall, Transport, elastic and thermal-expansion parameters of composite materials, in Thermophysical Properties of Materials, S. Burgerhartstraat, ed., North-Holland, Amsterdam, 1999, pp. 286–315.
  • D.H. Chung and W.R. Buessem, The Voigt–Reuss–Hill (VRH) approximation and the elastic moduli of polycrystalline ZnO, TiO2 (rutile), and α-Al2O3, J. Appl. Phys. 39 (1968), pp. 2777–2782. doi: 10.1063/1.1656672
  • X. Ren and W. Pan, Mechanical properties of high-temperature-degraded yttria-stabilized zirconia, Acta Mater. 69 (2014), pp. 397–406. doi: 10.1016/j.actamat.2014.01.017
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), 055504, pp. 1–4. doi: 10.1103/PhysRevLett.101.055504
  • H. Jackson and C. Walker, Thermal conductivity, second sound, and phonon-phonon interactions in NaF, Phys. Rev. B. 3 (1971), pp. 1428–1439. doi: 10.1103/PhysRevB.3.1428
  • D.G. Cahill, S.K. Watson, and R.O. Pohl, Lower limit to the thermal conductivity of disordered crystals, Phys. Rev. B. 46 (1992), pp. 6131–6140. doi: 10.1103/PhysRevB.46.6131
  • J. Feng, B. Xiao, R. Zhou, and W. Pan, Anisotropy in elasticity and thermal conductivity of monazite-type REPO4 (RE=La, Ce, Nd, Sm, Eu and Gd) from first-principles calculations, Acta Mater. 61 (2013), pp. 7364–7383. doi: 10.1016/j.actamat.2013.08.043

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.