333
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Fracture mechanisms of spinodal alloys

ORCID Icon & ORCID Icon
Pages 3007-3033 | Received 03 Jan 2018, Accepted 14 Aug 2018, Published online: 06 Sep 2018

References

  • W.M. Garrison Jr. and N.R. Moody, Ductile fracture, J. Phys. Chem. Sol. 48 (1987), pp. 1035–1074. doi: 10.1016/0022-3697(87)90118-1
  • A.L. Gurson, Continuum theory of ductile rupture by void nucleation and growth. Part I – Yield criteria and flow rules for porous ductile media, J. Engrg. Mater. Tech. 99 (1977), pp. 2–15. doi: 10.1115/1.3443401
  • S.H. Goods and L.M. Brown, Overview no. 1: the nucleation of cavities by plastic deformation, Acta Metall. 27 (1979), pp. 1–15. doi: 10.1016/0001-6160(79)90051-8
  • C.A. Pampillo and A.C. Reimschuessel, The fracture topography of metallic glasses, J. Mater. Sci. 9 (1974), pp. 718–724. doi: 10.1007/BF00761791
  • J. Mis̆kuf, K. Csach, V. Ocelík, V.Z. Bengus, E.D. Tabachnikova and P. Duhaj, Ductile fracture surface morphology of amorphous metallic alloys, Czec. J. Phys. 52 (2002), pp. A121–A129. doi: 10.1007/s10582-002-0028-x
  • D. Bhattacharjee and J.F. Knott, Effect of mixed mode I and II loading on the fracture surface of polymethyl methacrylate (PMMA), Int. J. Fract. 72 (1995), pp. 359–381. doi: 10.1007/BF00040373
  • A. Das, Fracture complexity of pressure vessel steels, Philos. Mag. 97 (2017), pp. 3084–3141. doi: 10.1080/14786435.2017.1367857
  • A. Das and J.K. Chakravartty, Fractographic correlations with mechanical properties in ferritic martensitic steels, Surf. Topo. Met. Prop. 5 (2017), pp. 045006–045020.
  • A. Das, S.K. Das and S. Tarafder, Correlation of fractographic features with mechanical properties in systematically varied microstructures of Cu-strengthened high-strength low-alloy steel, Metall. Mater. Trans. A 40 (2009), pp. 3138–3147. doi: 10.1007/s11661-009-9999-6
  • A. Das and S. Tarafder, Experimental investigation on martensitic transformation and fracture morphologies of austenitic stainless steel, Int. J. Plast. 25 (2009), pp. 2222–2247. doi: 10.1016/j.ijplas.2009.03.003
  • A. Das, S. Sivaprasad, P.C. Chakraborti and S. Tarafder, Correspondence of fracture surface features with mechanical properties in 304LN stainless steel, Mater. Sci. Eng. A 496 (2008), pp. 98–105. doi: 10.1016/j.msea.2008.05.007
  • A. Das, Martensite–void interaction, Scripta Mater. 68 (2013), pp. 514–517. doi: 10.1016/j.scriptamat.2012.11.039
  • A. Das and S. Tarafder, Geometry of dimples and its correlation with mechanical properties in austenitic stainless steel, Scripta Mater. 59 (2008), pp. 1014–1017. doi: 10.1016/j.scriptamat.2008.07.012
  • A. Das, S.K. Das, S. Sivaprasad and S. Tarafder, Fracture–property correlation in copper-strengthened high-strength low-alloy steel, Scripta Mater. 59 (2008), pp. 681–683. doi: 10.1016/j.scriptamat.2008.05.043
  • A. Das, Contribution of deformation-induced martensite to fracture appearance of austenitic stainless steel, Mater. Sci. Tech. 32 (2016), pp. 1366–1373. doi: 10.1080/02670836.2015.1126048
  • G.E. Dieter, Mechanical Metallurgy, SI Metric ed. ,McGraw-Hill, New York, NY, 1993, pp. 145.
  • A. Das, V. Verma and C.B. Basak, Elucidating microstructure of spinodal copper alloy through annealing, Mater. Char. 120 (2016), pp. 152–158. doi: 10.1016/j.matchar.2016.08.021
  • J.W. Cahn, On spinodal decomposition in cubic crystals, Acta Metall. 10 (1962), pp. 179–183. doi: 10.1016/0001-6160(62)90114-1
  • J.W. Cahn and J.E. Hilliard, Spinodal decomposition: a reprise, Acta Metall. 19 (1971), pp. 151–161. doi: 10.1016/0001-6160(71)90127-1
  • B. Ditchek and L.H. Schwartz, Applications of spinodal alloys, Annu. Rev. Mater. Sci. 9 (1979), pp. 219–253. doi: 10.1146/annurev.ms.09.080179.001251
  • L.H. Schwartz and J.T. Plewes, Spinodal decomposition in Cu–9wt% Ni–6wt% Sn – II. A critical examination of mechanical strength of spinodal alloys, Acta Metall. 22 (1974), pp. 911–921. doi: 10.1016/0001-6160(74)90058-3
  • L.H. Schwartz, S. Mahajan and J.T. Plewes, Spinodal decomposition in a Cu–9 wt% Ni–6 wt% Sn alloy, Acta Metall. 22 (1974), pp. 601–609. doi: 10.1016/0001-6160(74)90157-6
  • B. Ditchek and L.H. Schwartz, Diffraction study of spinodal decomposition in Cu–10 wt% Ni–6 wt% Sn, Acta Metall. 28 (1980), pp. 807–822. doi: 10.1016/0001-6160(80)90157-1
  • M.H. Hillert, A theory of nucleation for solid metallic solutions, PhD thesis, Massachusetts Institute of Technology, Boston, 1956.
  • R.E. Smallman, R.J. Bishop, Modern Physical Metallurgy and Materials Engineering: Science, Process, Applications, Butterworth–Heinemann, Oxford, 1999.
  • W.R. Cribb and J.O. Ratka, Copper spinodal alloys, Adv. Mater. Proc. 160 (2002), pp. 27–30.
  • A.K. Poswal, C.B. Basak, A. Agrawal, D. Bhattachryya, S.N. Jha and N.K. Sahoo, Local structure study of spinodal decomposition in copper–nickel–tin alloy using EXAFS In AIP Conference Proceedings (Vol. 1832, No. 1, pp. 060001). AIP Publishing (2017).
  • C.B. Basak and A.K. Poswal, Compositional partitioning during the spinodal decomposition in Cu–Ni–Sn alloy, Philos. Mag. 98 (2018), pp. 1204–1216. doi: 10.1080/14786435.2018.1436779
  • C.B. Basak and M. Krishnan, Applicability of Scheil–Gulliver solidification model in real alloy: a case study with Cu–9wt% Ni–6wt% Sn alloy, Philos. Mag. Lett. 95 (2015), pp. 376–383. doi: 10.1080/09500839.2015.1074296
  • L.H. Schwartz and J.T. Plewes, Spinodal decomposition in a Cu–9wt%Ni–6wt% Sn – II: A critical examination of mechanical strength of spinodal alloys, Acta Metall. 22 (1974), pp. 911–921. doi: 10.1016/0001-6160(74)90058-3
  • P. Virtanen, T. Tiainen and T. Lepistö, Precipitation at faceting grain boundaries of Cu–Ni–Sn alloys, Mater. Sci. Eng. A 251 (1998), pp. 269–275. doi: 10.1016/S0921-5093(98)00498-5
  • P. Sahu, S.K. Pradhan and M. De, X-ray diffraction studies of the decomposition and microstructural characterization of cold–worked powders of Cu–15Ni–Sn alloys by Rietveld analysis, J. Alloy Compd. 377 (2004), pp. 103–116. doi: 10.1016/j.jallcom.2003.10.019
  • K.V. Shankar and R. Sellamuthu, Determination of the effect of nickel content on hardness, optimum aging temperature and aging time for spinodal bronze alloys cast in metal mould, Appl. Mech. Mater. 813/814 (2015), pp. 597–602. doi: 10.4028/www.scientific.net/AMM.813-814.597
  • K.V. Shankar and R. Sellamuthu, Determination on the effect of tin content on microstructure, hardness, optimum aging temperature and aging time for spinodal bronze alloys cast in metal mold, Int. J. Metalcast. 11 (2017), pp. 189–194. doi: 10.1007/s40962-016-0034-6
  • K. Shankar and R. Sellamuthu, Determination of optimum aging temperature and time, mechanical and wear properties for Cu–9Ni–6Sn spinodal bronze alloy cast using permanent mould, Int. J. Mater. Eng. Innov. 8 (2017), pp. 27–38. doi: 10.1504/IJMATEI.2017.085809
  • A. Das, Phase transformation during tensile and low cycle fatigue deformation of AISI 304LN stainless steel, PhD thesis, Jadavpur University, Kolkata, 2013.
  • A. Das and J.K. Chakravartty, Correlation of fracture features with mechanical properties as a function of strain rate in zirconium alloys, Int. J. Mater. Res. 107 (2016), pp. 184–188. doi: 10.3139/146.111331
  • G. Sanyal, A. Das, J.B. Singh and J.K. Chakravartty, Effect of notch geometry on fracture features, Mater. Sci. Eng. A 641 (2015), pp. 210–214. doi: 10.1016/j.msea.2015.06.044
  • A. Das, Intervention of martensite variants on the spatial aspect of microvoids, Mater. Res. Exp. 3 (2016), pp. 066501–066512.
  • A. Das and P. Poddar, Structure–wear–property correlation, Mater. Des. 47 (2013), pp. 557–565. doi: 10.1016/j.matdes.2012.12.041
  • A. Das, Grain boundary engineering: fatigue fracture, Philos. Mag. 97 (2017), pp. 867–916. doi: 10.1080/14786435.2017.1285072
  • A. Das, Effect of stress state on fracture features. Metall. Mater. Trans. A 49 (2018), pp. 1–8.
  • K. Banerji, Quantitative fractography: a modern perspective, Metall. Trans. A 19 (1988), pp. 961–971. doi: 10.1007/BF02628381
  • E.E. Underwood and K. Banerji, In ASM Metals Handbook, 9th ed. 12, ASM International, Metals Park, OH, Vol. 1987, pp. 193–210.
  • E.E. Underwood, Quantitative Stereology, Addison Wesley Publishing Co., Reading, MA, 1970.
  • A.M. Gokhale, Quantitative Fractography, ASM Handbook, Vol. 11, Failure Analysis and Prevention (ASM International, Materials Park, OH, USA), 2002, pp. 538–556. (19).
  • http://www.msm.cam.ac.uk/phase-trans/.
  • M. Kuna, Finite Elements in Fracture Mechanics, Springer, Berlin, 2013. pp. 978–994. Vol. 10, No. 1007.
  • T.S. Srivatsan, S. Sriram, D. Veeraraghavan and V.K. Vasudevan, Microstructure, tensile deformation and fracture behaviour of aluminium alloy 7055, J. Mater. Sci. 32 (1997), pp. 2883–2894. doi: 10.1023/A:1018676501368
  • A.H. Cottrell, Theoretical aspects of fracture, in Fracture, B.L. Averbach, D.R. Felbeck, G.T. Hahn, D.A. Thomas, eds., The Technological Press of MIT and John Wiley and Sons, Inc., New York, 1959, 20.
  • D. Hull, Fractography: Observing, Measuring and Interpreting Fracture Surface Topography, Cambridge University Press, Cambridge, 1999.
  • E.A. Voitekhova and M.S. Konstantinova, Examination of the fracture surface by the channeling pattern method in the scanning electron microscope, Str. Mater. 18 (1986), pp. 1415–1418. doi: 10.1007/BF01523276
  • I.T. Young, J.J. Gerbrands and L.J. Van Vliet, Fundamentals of Image Processing, Delft University of Technology, The Netherlands, 1998.
  • M.N. Shabrov and A. Needleman, An analysis of inclusion morphology effects on void nucleation, Model. Simul. Mater. Sci. Eng. 10 (2002), pp. 163–173. doi: 10.1088/0965-0393/10/2/305
  • A.B. Geltmacher, D.A. Koss, P. Matic and M.G. Stout, A modeling study of the effect of stress state on void linking during ductile fracture, Acta Mater. 44 (1996), pp. 2201–2210. doi: 10.1016/1359-6454(95)00366-5
  • K. Takashima, Y. Higo, S. Sugiura and M. Shimojo, Fatigue crack growth behavior of micro-sized specimens prepared from an electroless plated Ni–P amorphous alloy thin film, Mater. Trans. 42 (2001), pp. 68–73. doi: 10.2320/matertrans.42.68
  • A. Sato, S.I. Katsuta and M. Kato, Stress aging of a Cu–10Ni–6Sn spinodal alloy, Acta Metall. 36 (1988), pp. 633–640. doi: 10.1016/0001-6160(88)90097-1
  • A.D. Brown, L. Wayne, Q. Pham, K. Krishnan, P. Peralta, S.N. Luo, B.M. Patterson, S. Greenfield, D. Byler, K.J. McClellan and A. Koskelo, Microstructural effects on damage nucleation in shock-loaded polycrystalline copper, Metall. Mater. Trans. A 46 (2015), pp. 4539–4547. doi: 10.1007/s11661-014-2482-z
  • T.V. Vijayaraghavan and H. Margolin, The effect of matrix strength on void nucleation and growth in an alpha–beta titanium alloy, CORONA-5, Metall. Trans. A 19 (1988), pp. 591–601. doi: 10.1007/BF02649273
  • M.J. Nemcko and D.S. Wilkinson, Impact of microstructure on void growth and linkage in pure magnesium, Int. J. Fract. 200 (2016), pp. 31–47. doi: 10.1007/s10704-016-0111-0
  • A.S. Argon, J. Im and R. Safoglu, Cavity formation from inclusions in ductile fracture, Metall. Trans. A 6 (1975), pp. 825–832. doi: 10.1007/BF02672306
  • A.L. Helbert, X. Feaugas and M. Clavel, The influence of stress trlaxiality on the damage mechanisms in an equiaxed Ti–6Al–4V alloy, Metall. Mater. Trans. A 27 (1996), pp. 3043–3058. doi: 10.1007/BF02663853
  • K. Tanaka, T. Mori and T. Nakamura, Cavity formation at the interface of a spherical inclusion in a plastically deformed matrix, Philos. Mag. 21 (1970), pp. 267–279. doi: 10.1080/14786437008238415
  • A. Smekal, Dynamik des spröden Zugbruches von zylindrischen Glasstäben, Acta Phys. Austr. 7 (1953), pp. 110–122.
  • V. Kerlins and A. Phillips, Modes of fracture, ASM Handbook 12 (1987), pp. 12–71.
  • T. Goldenberg, T.D. Lee and J.P. Hirth, Ductile fracture of U-notched bend specimens of spheroidized AISI 1095 steel, Metall. Trans. A 9 (1978), pp. 1663–1671. doi: 10.1007/BF02661950
  • P. Poruks, I. Yakubtsov and J.D. Boyd, Martensite–ferrite interface strength in a low-carbon bainitic steel, Scripta Mater. 54 (2006), pp. 41–45. doi: 10.1016/j.scriptamat.2005.09.012
  • D. Kwon and R.J. Asaro, A study of void nucleation, growth, and coalescence in spheroidized 1518 steel, Metall. Trans. A 21 (1990), pp. 117–125. doi: 10.1007/BF02656430
  • D.A. Curry, Cleavage micromechanisms of crack extension in steels, Metal Sci. 14 (1980), pp. 319–326. doi: 10.1179/msc.1980.14.8-9.319
  • B.G. Lefevre, A.T. D'annessa and D. Kalish, Age hardening in Cu–15Ni–8Sn alloy, Metall. Trans. A 9 (1978), pp. 577–586. doi: 10.1007/BF02646415

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.