252
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effects of stacking fault energies on formation of irradiation-induced defects at various temperatures in face-centred cubic metals

, , , , &
Pages 3034-3047 | Received 02 Feb 2018, Accepted 16 Aug 2018, Published online: 06 Sep 2018

References

  • W.J. Phythian, R.E. Stoller, A.J.E. Foreman, A.F. Calder, and D.J. Bacon, A comparison of displacement cascades in copper and iron by molecular-dynamics and its application to microstructural evolution, J. Nucl. Mater. 223 (1995) pp. 245–261. doi: 10.1016/0022-3115(95)00022-4
  • L. Malerba, Molecular dynamics simulation of displacement cascades in α-Fe: a critical review, J. Nucl. Mater. 351 (2006), pp. 28–38. doi: 10.1016/j.jnucmat.2006.02.023
  • E. Zarkadoula, S.L. Daraszewicz, D.M. Duffy, M.A. Seaton, I.T. Todorov, K. Nordlund, M.T. Dove, and K. Trachenko, The nature of high-energy radiation damage in iron, J. Phys. Condens. Matter 25 (2013), pp. 125402-1–125402-7. doi: 10.1088/0953-8984/25/12/125402
  • R.E. Voskoboinikov, Y.N. Osetsky, and D.J. Bacon, Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics, J. Nucl. Mater. 377 (2008), pp. 385–395. doi: 10.1016/j.jnucmat.2008.01.030
  • Y.N. Osetsky, D.J. Bacon, A. Serra, B.N. Singh, and S.I. Golubov, Stability and mobility of defect clusters and dislocation loops in metals, J. Nucl. Mater. 276 (2000), pp. 65–77. doi: 10.1016/S0022-3115(99)00170-1
  • N.V. Doan, Interstitial cluster motion in displacement cascades, J. Nucl. Mater. 283–287 (2000), pp. 763–767. doi: 10.1016/S0022-3115(00)00260-9
  • Y.N. Osetsky, D.J. Bacon, B.N. Singh, and B.D. Wirth, Atomistic study of the generation, interaction, accumulation and annihilation of cascade-induced defect clusters, J. Nucl. Mater. 307–311 (2002), pp. 852–861. doi: 10.1016/S0022-3115(02)01094-2
  • D.J. Bacon, F. Gao, and Y.N. Osetsky, The primary damage state in fcc, bcc and hcp metals as seen in molecular dynamics simulations, J. Nucl. Mater. 276 (2000), pp. 1–12.
  • D.J. Bacon, F. Gao, and Y.N. Osetsky, Computer simulation of displacement cascades and the defects they generate in metals, Nucl. Instrum. Meth. B. 153 (1999), pp. 87–98. doi: 10.1016/S0168-583X(99)00041-5
  • C.H. Woo and B.N. Singh, Production bias due to clustering of point defects in irradiation induced cascades, Phil. Mag. A. 65 (1992), pp. 889–912. doi: 10.1080/01418619208205596
  • B.N. Singh, M. Eldrup, A. Horsewell, P. Ehrhart, and F. Dworschak, On recoil energy dependent void swelling in pure copper, Phil. Mag. A. 80 (2000), pp. 2629–2650. doi: 10.1080/01418610008216496
  • S.I. Golubov, B.N. Singh, and H. Trinkaus, On recoil-energy-dependent defect accumulation in pure copper. Part II. Theoretical treatment, Phil. Mag. A. 81 (2001), pp. 2533–2552. doi: 10.1080/01418610108217162
  • Y.N. Osetsky, A. Serra, B.N. Singh, and S.I. Golubov, Structure and properties of clusters of self-interstitial atoms in fcc copper and bcc iron, Phil. Mag. A. 80 (2000), pp. 2131–2157. doi: 10.1080/01418610008212155
  • Y.N. Osetsky, D.J. Bacon, and B.N. Singh, Statistical analysis of cluster production efficiency in MD simulations of cascades in copper, J. Nucl. Mater. 307–311 (2002), pp. 866–870. doi: 10.1016/S0022-3115(02)01001-2
  • D.J. Bacon, A.F. Calder, and F. Gao, Defect production due to displacement cascades in metals as revealed by computer simulation, J Nucl. Mater. 251 (1997), pp. 1–12. doi: 10.1016/S0022-3115(97)00216-X
  • R. Schibli and R. Schaublin, On the formation of stacking fault tetrahedra in irradiated austenitic stainless steels – A literature review, J. Nucl. Mater. 442 (2013), pp. S761–S767. doi: 10.1016/j.jnucmat.2013.05.077
  • S.J. Zinkle, L.E. Seizman, and W.G. Wolfer, Stability of vacancy clusters in metals: I. energy calculations for pure metals, Phil. Mag. A. 55 (1987), pp. 111–125. doi: 10.1080/01418618708209803
  • Y.N. Osetsky, R.E. Stoller, D. Rodney, and D.J. Bacon, Atomic-scale details of dislocation-stacking fault tetrahedra interaction, Mater. Sci. Eng. A. 400–401 (2005), pp. 370–373. doi: 10.1016/j.msea.2005.03.038
  • H.J. Lee and B.D. Wirth, Molecular dynamics simulation of the interaction between a mixed dislocation and a stacking fault tetrahedron, Phil. Mag. 89 (2009), pp. 821–841. doi: 10.1080/14786430902776954
  • Y. Yang, T. Okita, M. Itakura, T. Kawabata, and K. Suzuki, Influence of stacking fault energies on the size distribution and character of defect clusters formed by collision cascades in face-centered cubic metals, Nucl. Mater. Energy 9 (2016), pp. 587–591. doi: 10.1016/j.nme.2016.07.008
  • T. Okita, Y. Yang, J. Hirabayashi, M. Itakura, and K. Suzuki, Effects of stacking fault energy on defect formation process in face-centered cubic metals, Phil. Mag. 96 (2016), pp. 1579–1597. doi: 10.1080/14786435.2016.1171415
  • LAMMPS Molecular Dynamics Simulator. Software available at http://lammps.sandia.gov/.
  • V. Borovikov, M.I. Mendelev, A.H. King, and R. Lesar, Effect of stacking fault energy on mechanism of plastic deformation in nanotwinned FCC metals, MSMSE 23 (2015), pp. 055003-1–055003-16.
  • M.I. Mendelev and A.H. King, The interactions of self-interstitials with twin boundaries, Phil. Mag. 93 (2013), pp. 1268–1278. doi: 10.1080/14786435.2012.747012
  • J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids, Vol. 1, Pergamon, New York, 1985.
  • R.E. Stoller, G.R. Odette, and B.D. Wirth, Primary damage formation in bcc iron, J. Nucl. Mater. 251 (1997), pp. 49–60. doi: 10.1016/S0022-3115(97)00256-0
  • S. Miyashiro, S. Fujita, and T. Okita, MD simulations to evaluate the influence of applied normal stress or deformation on defect production rate and size distribution of clusters in cascade process for pure Cu, J. Nucl. Mater. 415 (2011), pp. 1–4.
  • S. Miyashiro, S. Fujita, T. Okita, and H. Okuda, MD simulations to evaluate effects of applied tensile strain on irradiation-induced defect production at various PKA energies, Fusion Eng. Des. 87 (2012), pp. 1352–1355. doi: 10.1016/j.fusengdes.2012.03.012
  • Y.N. Osetsky, D.J. Bacon, A. Serra, B.N. Singh, and S.I. Golubov, One-dimensional atomic transport by cluster of self-interstitial atoms in iron and copper, Phil. Mag. 83 (2003), pp. 61–91. doi: 10.1080/0141861021000016793
  • J.D. Honeycutt and H.C. Andersen, Molecular dynamics study of melting and freezing of small Lennard–Jones clusters, J. Phys. Chem. 91 (1987), pp. 4950–4963. doi: 10.1021/j100303a014
  • D. Fakan and H. Jonsson, Systematic analysis of local atomic structure combined with 3D computer graphics, Comput. Mater. Sci. 2 (1994), pp. 279–286. doi: 10.1016/0927-0256(94)90109-0
  • M.J. Norgett, M.T. Robinson, and I.M. Torrens, A proposed method of calculating displacement dose rates, Nucl. Eng. Des. 33 (1975), pp. 50–54. doi: 10.1016/0029-5493(75)90035-7
  • A.E. Sand, S.L. Dudarev, K. Nordlund, High-energy collision cascades in tungsten: dislocation loops structure and clustering scaling laws, EPL. 103 (2013) 46003. doi: 10.1209/0295-5075/103/46003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.