254
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Micro-computed tomography based experimental investigation of micro- and macro-mechanical response of particulate composites with void growth

&
Pages 3049-3071 | Received 17 Feb 2018, Accepted 05 Jul 2018, Published online: 07 Sep 2018

References

  • T. Monetta, A. Acquesta, and F. Bellucci, Graphene/epoxy coating as multifunctional material for aircraft structures, Aerospace 2 (2015), pp. 423–434. doi: 10.3390/aerospace2030423
  • H. Qi, B. Schulz, T. Vad, J. Liu, E. Mäder, G. Seide, and T. Gries, Novel carbon nanotube/cellulose composite fibers as multifunctional materials, ACS Appl. Mat. Int. 7 (2015), pp. 22404–22412. doi: 10.1021/acsami.5b06229
  • C.F. Matos, F. Galembeck, and A.J. Zarbin, Multifunctional materials based on iron/iron oxide-filled carbon nanotubes/natural rubber composites, Carbon 50 (2012), pp. 4685–4695. doi: 10.1016/j.carbon.2012.05.060
  • S. Kumar, S. Raj, S. Jain, and K. Chatterjee, Multifunctional biodegradable polymer nanocomposite incorporating graphene-silver hybrid for biomedical applications, Mater. Des. 108 (2016), pp. 319–332. doi: 10.1016/j.matdes.2016.06.107
  • J. Oden, T. Belytschko, J. Fish, T. Hughes, C. Johnson, D. Keyes, A. Laub, L. Petzold, D. Srolovitz, and S. Yip, Simulation-based engineering science: Revolutionizing engineering science through simulation, Tech. Rep., 2006.
  • K. Matouš, M.G. Geers, V.G. Kouznetsova, and A. Gillman, A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials, J. Comput. Phys. 330 (2017), pp. 192–220. doi: 10.1016/j.jcp.2016.10.070
  • G.B. Olson, Computational design of hierarchically structured materials, Science 277 (1997), pp. 1237–1242. doi: 10.1126/science.277.5330.1237
  • N.R. Council, Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security, National Academies Press, Washington, DC, 2008.
  • D.L. McDowell, J. Panchal, H.J. Choi, C. Seepersad, J. Allen, and F. Mistree, Integrated Design of Multiscale, Multifunctional Materials and Products, Butterworth-Heinemann, Burlington, MA, 2009.
  • M.J. Beran and A. Pytte, Statistical continuum theories, Amer. J. Phys. 36 (1968), pp. 923–923. doi: 10.1119/1.1974326
  • D. McDowell, S. Ghosh, and S. Kalidindi, Representation and computational structure-property relations of random media, JOM 63 (2011), pp. 45–51. doi: 10.1007/s11837-011-0045-y
  • S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Vol. 16, Springer Science & Business Media, Princeton, NJ, 2013.
  • H. Lee, M. Brandyberry, A. Tudor, and K. Matouš, Three-dimensional reconstruction of statistically optimal unit cells of polydisperse particulate composites from microtomography, Phys. Rev. E 80 (2009), pp. 061301.
  • A. Gillman, K. Matouš, and S. Atkinson, Microstructure-statistics-property relations of anisotropic polydisperse particulate composites using tomography, Phys. Rev. E 87 (2013), pp. 022208. doi: 10.1103/PhysRevE.87.022208
  • J. Zangenberg and P. Brøndsted, Quantitative study on the statistical properties of fibre architecture of genuine and numerical composite microstructures, Compos. A, Appl. Sci. Manuf. 47 (2013), pp. 124–134. doi: 10.1016/j.compositesa.2012.11.015
  • R. Young, E. Kirk, D. Williams, and H. Ahmed, Fabrication of planar and cross-sectional TEM specimens using a focused ion beam, MRS Proc. 199 (1990), pp. 205. doi: 10.1557/PROC-199-205
  • D.P. Basile, R. Boylan, B. Baker, D. Soza, and K. Hayes, Fibxtem – focussed ion beam milling for TEM sample preparation. MRS Proc. 254 (1991), pp. 23–41. doi: 10.1557/PROC-254-23
  • R. Wirth, Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale, Chem. Geol. 261 (2009), pp. 217–229. doi: 10.1016/j.chemgeo.2008.05.019
  • K. Benzerara, N. Menguy, F. Guyot, C. Vanni, and P. Gillet, TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling, Geochim. Cosmochim. Acta 69 (2005), pp. 1413–1422. doi: 10.1016/j.gca.2004.09.008
  • J. Li, M. Elmadagli, V. Gertsman, J. Lo, and A. Alpas, FIB and TEM characterization of subsurfaces of an Al–Si alloy (a390) subjected to sliding wear, Mater. Sci. Eng. A 421 (2006), pp. 317–327. doi: 10.1016/j.msea.2006.01.084
  • L. Holzer, F. Indutnyi, P. Gasser, B. Münch, and M. Wegmann, Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography, J. Microsc. 216 (2004), pp. 84–95. doi: 10.1111/j.0022-2720.2004.01397.x
  • R. Wirth, Focused Ion Beam (FIB) a novel technology for advanced application of micro-and nanoanalysis in geosciences and applied mineralogy, Eur. J. Mineral. 16 (2004), pp. 863–876. doi: 10.1127/0935-1221/2004/0016-0863
  • A. Gillman, M. Roelofs, K. Matouš, V. Kouznetsova, O. van der Sluis, and M. van Maris, Microstructure statistics–property relations of silver particle-based interconnects, Mater. Des. 118 (2017), pp. 304–313. doi: 10.1016/j.matdes.2017.01.005
  • D. Yushu, S. Lee, and K. Matouš, Sharp volumetric billboard based characterization and modeling of complex 3D Ni/Al high energy ball milled composites, Mech. Mater. 108 (2017), pp. 93–106. doi: 10.1016/j.mechmat.2017.02.008
  • V. Kuperman, Magnetic Resonance Imaging: Physical Principles and Applications, Academic Press, San Diego, CA, 2000.
  • B.P. Flannery, H.W. Deckman, W.G. Roberge, and K.L. D'AMICO, Three-dimensional X-ray microtomography, Science 237 (1987), pp. 1439–1444. doi: 10.1126/science.237.4821.1439
  • J. Kinney, Q. Johnson, U. Bonse, M. Nichols, R. Saroyan, R. Nusshardt, R. Pahl, and J. Brase, Three dimensional X-ray computed tomography in materials science, MRS Bull. 13 (1988), pp. 13–18. doi: 10.1557/S0883769400066525
  • J. Kinney, M. Nichols, U. Bonse, S. Stock, T. Breunig, A. Guvenilir, and R. Saroyan, Nondestructive imaging of materials microstructures using X-ray tomographic microscopy, MRS Online Proc. Libr. Arch. 217 (1990), pp. 81–95. doi: 10.1557/PROC-217-81
  • P. Rüegsegger and B. Köller, A micro-CT system for the nondestructive analysis of bone samples, 10th International Bone Densitometry Workshop, Venice, Italy, 1994.
  • E.L. Ritman, Micro-computed tomography current status and developments, Annu. Rev. Biomed. Eng. 6 (2004), pp. 185–208. doi: 10.1146/annurev.bioeng.6.040803.140130
  • S. Stock, X-ray microtomography of materials, Int. Mater. Rev. 44 (1999), pp. 141–164. doi: 10.1179/095066099101528261
  • G. Wang, H. Yu, and B. De Man, An outlook on X-ray CT research and development, Med. Phys. 35 (2008), pp. 1051–1064. doi: 10.1118/1.2836950
  • B.M. Patterson and C.E. Hamilton, Dimensional standard for micro X-ray computed tomography, Anal. Chem. 82 (2010), pp. 8537–8543. doi: 10.1021/ac101522q
  • S. Gallier and F. Hiernard, Microstructure of composite propellants using simulated packings and X-ray tomography, J. Propuls. Power 24 (2008), pp. 154–157. doi: 10.2514/1.30454
  • B.M. Patterson, J.P. Escobedo-Diaz, D. Dennis-Koller, and E. Cerreta, Dimensional quantification of embedded voids or objects in three dimensions using X-ray tomography, Microsc. Microanal. 18 (2012), pp. 390–398. doi: 10.1017/S1431927611012554
  • T. Dillard, F. Nguyen, E. Maire, L. Salvo, S. Forest, Y. Bienvenu, J.D. Bartout, M. Croset, R. Dendievel, and P. Cloetens, 3D quantitative image analysis of open-cell nickel foams under tension and compression loading using X-ray microtomography, Philos. Mag. 85 (2005), pp. 2147–2175. doi: 10.1080/14786430412331331916
  • Q. Zhang, H. Toda, Y. Takami, Y. Suzuki, K. Uesugi, and M. Kobayashi, Assessment of 3d inhomogeneous microstructure of highly alloyed aluminium foam via dual energy k-edge subtraction imaging, Philos. Mag. 90 (2010), pp. 1853–1871. doi: 10.1080/14786430903571438
  • T. Ohgaki, H. Toda, M. Kobayashi, K. Uesugi, M. Niinomi, T. Akahori, T. Kobayash, K. Makii, and Y. Aruga, In situ observations of compressive behaviour of aluminium foams by local tomography using high-resolution X-rays, Philos. Mag. 86 (2006), pp. 4417–4438. doi: 10.1080/14786430600724454
  • G.N. Hounsfield, Computerized transverse axial scanning (tomography): Part 1. description of system, Br. J. Radiol. 46 (1973), pp. 1016–1022. doi: 10.1259/0007-1285-46-552-1016
  • B. London, R.N. Yancey, and J. Smith, High-resolution X-ray computed tomography of composite materials, Mater. Eval. 48 (1990), pp. 604–608.
  • G.Y. Baaklini, R.T. Bhatt, A.J. Eckel, P. Engler, R.W. Rauser, and M.G. Castelli, X-ray microtomography of ceramic and metal matrix composites, Mater. Eval. 53 (1995), pp. 1040–1044.
  • D. Bull, S. Spearing, and I. Sinclair, Observations of damage development from compression-after-impact experiments using ex situ micro-focus computed tomography, Compos. Sci. Technol. 97 (2014), pp. 106–114. doi: 10.1016/j.compscitech.2014.04.008
  • M. Barburski, I. Straumit, X. Zhang, M. Wevers, and S.V. Lomov, Micro-ct analysis of internal structure of sheared textile composite reinforcement, Compos. A, Appl. Sci. Manuf. 73 (2015), pp. 45–54. doi: 10.1016/j.compositesa.2015.03.008
  • A. Guvenilir, T. Breunig, J. Kinney, and S. Stock, Direct observation of crack opening as a function of applied load in the interior of a notched tensile sample of Al-Li 2090, Acta Mater. 45 (1997), pp. 1977–1987. doi: 10.1016/S1359-6454(96)00311-4
  • S. Youssef, E. Maire, and R. Gaertner, Finite element modelling of the actual structure of cellular materials determined by X-ray tomography, Acta Mater. 53 (2005), pp. 719–730. doi: 10.1016/j.actamat.2004.10.024
  • K. Madi, S. Forest, M. Boussuge, S. Gailliègue, E. Lataste, J.Y. Buffière, D. Bernard, and D. Jeulin, Finite element simulations of the deformation of fused-cast refractories based on X-ray computed tomography, Comput. Mater. Sci. 39 (2007), pp. 224–229. doi: 10.1016/j.commatsci.2006.01.033
  • O. Caty, E. Maire, S. Youssef, and R. Bouchet, Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements, Acta Mater. 56 (2008), pp. 5524–5534. doi: 10.1016/j.actamat.2008.07.023
  • J.Y. Buffière, P. Cloetens, W. Ludwig, E. Maire, and L. Salvo, In situ X-ray tomography studies of microstructural evolution combined with 3d modeling, MRS Bull. 33 (2008), pp. 611–619. doi: 10.1557/mrs2008.126
  • A. Somashekar, S. Bickerton, and D. Bhattacharyya, Compression deformation of a biaxial stitched glass fibre reinforcement: Visualisation and image analysis using X-ray micro-CT, Compos. A, Appl. Sci. Manuf. 42 (2011), pp. 140–150. doi: 10.1016/j.compositesa.2010.10.017
  • M.B. Bettaieb, X. Lemoine, O. Bouaziz, A.M. Habraken, and L. Duchêne, Numerical modeling of damage evolution of DP steels on the basis of X-ray tomography measurements, Mech. Mater. 43 (2011), pp. 139–156. doi: 10.1016/j.mechmat.2011.02.005
  • R. Sencu, Z. Yang, Y. Wang, P. Withers, C. Rau, A. Parson, and C. Soutis, Generation of micro-scale finite element models from synchrotron X-ray CT images for multidirectional carbon fibre reinforced composites, Compos. A, Appl. Sci. Manuf. 91 (2016), pp. 85–95. doi: 10.1016/j.compositesa.2016.09.010
  • T.T. Nguyen, J. Yvonnet, M. Bornert, and C. Chateau, Initiation and propagation of complex 3d networks of cracks in heterogeneous quasi-brittle materials: Direct comparison between in situ testing-microCT experiments and phase field simulations, J. Mech. Phys. Solids. 95 (2016), pp. 320–350. doi: 10.1016/j.jmps.2016.06.004
  • Y. Tsang and C. Tsang, A particle-tracking method for advective transport in fractures with diffusion into finite matrix blocks, Water. Resour. Res. 37 (2001), pp. 831–835. doi: 10.1029/2000WR900367
  • A. Germaneau, P. Doumalin, and J.C. Dupré, Comparison between X-ray micro-computed tomography and optical scanning tomography for full 3D strain measurement by digital volume correlation, NDT E Int. 41 (2008), pp. 407–415. doi: 10.1016/j.ndteint.2008.04.001
  • S.F. Nielsen, H.F. Poulsen, F. Beckmann, C. Thorning, and J. Wert, Measurements of plastic displacement gradient components in three dimensions using marker particles and synchrotron X-ray absorption microtomography, Acta Mater. 51 (2003), pp. 2407–2415. doi: 10.1016/S1359-6454(03)00053-3
  • A. Germaneau, P. Doumalin, and J.C. Dupré, 3D strain field measurement by correlation of volume images using scattered light: Recording of images and choice of marks, Strain 43 (2007), pp. 207–218. doi: 10.1111/j.1475-1305.2007.00340.x
  • K. Haldrup, S.F. Nielsen, and J.A. Wert, A general methodology for full-field plastic strain measurements using X-ray absorption tomography and internal markers, Exp. Mech. 48 (2008), pp. 199–211. doi: 10.1007/s11340-007-9079-z
  • Y. Barranger, P. Doumalin, J.C. Dupre, A. Germaneau, S. Hedan, and V. Valle, Evaluation of three-dimensional and two-dimensional full displacement fields of a single edge notch fracture mechanics specimen, in light of experimental data using X-ray tomography, Eng. Fract. Mech. 76 (2009), pp. 2371–2383. doi: 10.1016/j.engfracmech.2009.08.001
  • B. Wang, B. Pan, and G. Lubineau, Morphological evolution and internal strain mapping of pomelo peel using X-ray computed tomography and digital volume correlation, Mater. Des. 137 (2018), pp. 305–315. doi: 10.1016/j.matdes.2017.10.038
  • E. Ferrié, J.Y. Buffière, W. Ludwig, A. Gravouil, and L. Edwards, Fatigue crack propagation: In situ visualization using X-ray microtomography and 3D simulation using the extended finite element method, Acta Mater. 54 (2006), pp. 1111–1122. doi: 10.1016/j.actamat.2005.10.053
  • S. Birosca, J. Buffiere, F. Garcia-Pastor, M. Karadge, L. Babout, and M. Preuss, Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction, Acta Mater. 57 (2009), pp. 5834–5847. doi: 10.1016/j.actamat.2009.08.009
  • S. Terzi, L. Salvo, M. Suéry, N. Limodin, J. Adrien, E. Maire, Y. Pannier, M. Bornert, D. Bernard, M. Felberbaum, et al. In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys, Scr. Mater. 61 (2009), pp. 449–452. doi: 10.1016/j.scriptamat.2009.04.041
  • S.H. Ibrahim, M. Neumann, F. Klingner, V. Schmidt, and T. Wejrzanowski, Analysis of the 3d microstructure of tape-cast open-porous materials via a combination of experiments and modeling, Mater. Des. 133 (2017), pp. 216–223. doi: 10.1016/j.matdes.2017.07.058
  • H. Lee, A.S. Gillman, and K. Matouš, Computing overall elastic constants of polydisperse particulate composites from microtomographic data, J. Mech. Phys. Solids 59 (2011), pp. 1838–1857. doi: 10.1016/j.jmps.2011.05.010
  • A. Gillman and K. Matouš, Third-order model of thermal conductivity for random polydisperse particulate materials using well-resolved statistical descriptions from tomography, Phys. Lett. A 378 (2014), pp. 3070–3073. doi: 10.1016/j.physleta.2014.08.032
  • K. Matouš, H. Inglis, X. Gu, D. Rypl, T. Jackson, and P.H. Geubelle, Multiscale modeling of solid propellants: From particle packing to failure, Compos. Sci. Technol. 67 (2007), pp. 1694–1708. doi: 10.1016/j.compscitech.2006.06.017
  • T.L. Jackson, Modeling of heterogeneous propellant combustion: A survey, AIAA J. 50 (2012), pp. 993–1006. doi: 10.2514/1.J051585
  • H. Berghout, S. Son, C. Skidmore, D. Idar, and B. Asay, Combustion of damaged PBX 9501 explosive, Thermochim. Acta 384 (2002), pp. 261–277. doi: 10.1016/S0040-6031(01)00802-4
  • T.M. Willey, L. Lauderbach, F. Gagliardi, T. van Buuren, E.A. Glascoe, J.W. Tringe, J.R. Lee, H.K. Springer, and J. Ilavsky, Mesoscale evolution of voids and microstructural changes in hmx-based explosives during heating through the β-δ phase transition, J. Appl. Phys. 118 (2015), pp. 055901. doi: 10.1063/1.4927614
  • BOSE ElectroForce Fatigue Test Instruments. Available at http://www.devicetesting.com/tools_elf3200.cfm.
  • FEI, Amira-Avizo 3D Software. Available at https://www.fei.com/software/amira-avizo/.
  • Bruker. MicroCT, Skycan: High Resolution Desk-Top Micro-CT. Available at http://bruker-microct.com/products/1172.htm.
  • S. Nutt and A. Needleman, Void nucleation at fiber ends in Al-SiC composites, Scr. Metal. 21 (1987), pp. 705–710. doi: 10.1016/0036-9748(87)90389-9
  • D. Hull and D. Rimmer, The growth of grain-boundary voids under stress, Philos. Mag. 4 (1959), pp. 673–687. doi: 10.1080/14786435908243264
  • D. Lloyd, Aspects of fracture in particulate reinforced metal matrix composites, Acta Metall. Mater. 39 (1991), pp. 59–71. doi: 10.1016/0956-7151(91)90328-X
  • S.Y. Fu, X.Q. Feng, B. Lauke, and Y.W. Mai, Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites, Compos. B, Eng. 39 (2008), pp. 933–961. doi: 10.1016/j.compositesb.2008.01.002
  • K. Matouš and P.H. Geubelle, Multiscale modelling of particle debonding in reinforced elastomers subjected to finite deformations, Internat. J. Numer. Methods Engrg. 65 (2006), pp. 190–223. doi: 10.1002/nme.1446

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.