195
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Evaluation of anisotropic small-angle neutron scattering data from metastable β-Ti alloy

ORCID Icon, , , , , , , & show all
Pages 3086-3108 | Received 26 Apr 2018, Accepted 30 Aug 2018, Published online: 09 Sep 2018

References

  • D. de Fontaine, N.E. Paton, and J.C Williams, The omega phase transformation in titanium alloys as an example of displacement controlled reactions, Acta Metall. 19 (1971), pp. 1153–1162. doi: 10.1016/0001-6160(71)90047-2
  • J.C. Williams, D. de Fontaine, and N.E. Paton, The ω-phase as an example of an unusual shear transformation, Metallurgical Trans. 4 (1973), pp. 2701–2708.
  • S. Nag, A. Devaraj, R. Srinivasan, R.E.A. Williams, N. Gupta, G.B. Viswanathan, J.S. Tiley, S. Banerjee, S.G. Srinivasan, H.L. Fraser, R. Banerjee, Novel mixed-mode phase transition involving a composition-dependent displacive component, Phys. Rev. Lett. 106 (2011), p. 231. doi: 10.1103/PhysRevLett.106.245701
  • J. Šmilauerová, P. Harcuba, J. Stráský, J. Stráská, M. Janeček, J. Pospíšil, R. Kužel, T. Brunátová, V. Holý, and J. Ilavský, Ordered array of ω particles in β-Ti matrix studied by small-angle X-ray scattering, Acta Mater. 81 (2014), pp. 71–82. doi: 10.1016/j.actamat.2014.06.042
  • M. Véron and P. Bastie, Strain induced directional coarsening in nickel based superalloys: investigation on kinetics using the small angle neutron scattering (SANS) technique, Acta Mater. 45 (1997), pp. 3277–3282. doi: 10.1016/S1359-6454(97)00035-9
  • R.J.R. Miller, S. Messoloras, R.J. Stewart, and G. Kostorz, A small-angle neutron scattering study of the temperature and stress dependence of the microstructure of nimonic alloys, J. Appl. Cryst. 11 (1978), pp. 583–588. doi: 10.1107/S0021889878013941
  • D. Mukherji, D. Del Genovese, P. Strunz, R. Gilles, A. Wiedenmann, J. Rösler, Microstructural characterisation of a Ni–Fe-based superalloy by in situ small-angle neutron scattering measurements, J. Phys. Condens. Matter 20 (2008), pp. 104220 (9 pp). doi: 10.1088/0953-8984/20/10/104220
  • G.A. Zickler, R. Schnitzer, R. Radis, R. Hochfellner, R. Schweins, M. Stockinger, and H. Leitner, Microstructure and mechanical properties of the superalloy ATI allvac® 718Plus™, Mater. Sci. Eng. A 523 (2009), pp. 295-303. doi: 10.1016/j.msea.2009.06.014
  • F. Zhang, L.E. Levine, A.J. Allen, C.E. Campbell, A.A. Creuziger, N. Kazantseva, and J. Ilavsky, In situ structural characterization of ageing kinetics in aluminum alloy 2024 across angstrom-to-micrometer length scales, Acta Mater 111 (2016), pp. 385-398. doi: 10.1016/j.actamat.2016.03.058
  • G. Kostorz, Small-angle neutron scattering, in Neutron Scattering (Treatise on Materials Science and Technology), G. Kostorz, ed.. Academic Press, New York, 1979, pp. 227–289.
  • P. Strunz and A. Wiedenmann, Fully numerical procedure for anisotropic small-angle neutron scattering modelling and data evaluation, J. Appl. Cryst. 30 (1997), pp. 1132–1139. doi: 10.1107/S0021889897001283
  • P. Strunz, A. Wiedenmann, R. Gilles, D. Mukherji, J. Zrník, and G. Schumacher, Evaluation procedure for anisotropic SANS, J. Appl. Cryst. 33 (2000), pp. 834–838. doi: 10.1107/S002188980009974X
  • P. Strunz, R. Gilles, D. Mukherji, and A. Wiedenmann, Evaluation of anisotropic small-angle neutron scattering data; a faster approach, J. Appl. Cryst. 36 (2003), pp. 854–859. doi: 10.1107/S0021889803001705
  • P. Strunz, A. Wiedenmann, J. Zrník, and P. Lukáš, Small-angle neutron scattering investigation of precipitation in single-crystal nickel-based superalloy ZS26, J. Appl. Cryst. 30 (1997), pp. 597–601. doi: 10.1107/S0021889897001295
  • P. Strunz, D. Mukherji, R. Gilles, A. Wiedenmann, J. Rösler, and H. Fuess, Determination of γ′ solution temperature in Re-rich Ni-base superalloy by small-angle neutron scattering, J. Appl. Cryst. 34 (2001), pp. 541–548. doi: 10.1107/S0021889801004708
  • D. Mukherji, P. Strunz, R. Gilles, J. Rösler, A. Wiedenmann, and H. Fueß, In situ SANS investigation of precipitate microstructure at elevated temperatures in Re-rich Ni-base superalloy, Appl. Phys. A 74 (2002), pp. s1074–s1076. doi: 10.1007/s003390201681
  • J. Zrník, P. Strunz, P. Horňák, V. Vrchovinský, and A. Wiedenmann, Microstructural changes in long-time thermally exposed Ni-base superalloy studied by SANS, Appl. Phys. A 74 (2002), pp. s1155–s1157. doi: 10.1007/s003390101208
  • P. Strunz, G. Schumacher, W. Chen, D. Mukherji, R. Gilles, and A. Wiedenmann, SANS examination of precipitate microstructure in the creep-exposed single-crystal Ni-base superalloy SC16, Appl. Phys. A 74 (2002), pp. S1083–S1085, doi:10.1007/s003390101195.
  • D. Del Genovese, P. Strunz, D. Mukherji, R. Gilles, and J. Rösler, Microstructural characterization of a modified 706-type Ni-Fe superalloy by small-angle neutron scattering and electron microscopy, Metallurgical Mater. Trans. A 36 (2005), pp. 3439–3450. doi: 10.1007/s11661-005-0017-3
  • J. Zrník, P. Strunz, M. Maldini, A. Wiedenmann, and V. Davydov, Small-angle neutron scattering investigation of γ’ precipitate morphology evolution in creep exposed single-crystal Ni-base superalloy CMSX-4, J. Phys. Condens. Matter. 20 (2008), pp. 104261 (8 pp). doi: 10.1088/0953-8984/20/10/104261
  • P. Strunz, G. Schumacher, H. Klingelhöffer, A. Wiedenmann, J. Šaroun, and U. Keiderling, In situ observation of morphological changes of γ’ precipitates in a pre-deformed single-crystal Ni-base superalloy, J. Appl. Cryst. 44 (2011), pp. 935–944. doi: 10.1107/S0021889811028147
  • P. Strunz, D. Mukherji, G. Pigozzi, R. Gilles, T. Geue, and K. Pranzas, Characterization of core-shell nanoparticles by small angle neutron scattering, Appl. Phys. A 88 (2007), pp. 277–284. doi: 10.1007/s00339-007-4008-7
  • P. Strunz, D. Mukherji, R. Gilles, T. Geue, and J. Rösler, Investigation of metal-matrix composite containing liquid-phase dispersion, J. Phys. Conf. Ser. 340 (2012), pp. 012098. doi: 10.1088/1742-6596/340/1/012098
  • S. Azimzadeh, H. Rack, Phase transformations in Ti-6.8Mo-4.5Fe-1.5Al, Metallurgical Mater. Trans. A 29 (1998), pp. 2455–2467.
  • F. Prima, P. Vermaut, T. Gloriant, and J. Debuigne, D. Ansel, Experimental evidence of elastic interaction between ω nanoparticles embedded in a metastable β titanium alloy, J. Mater. Sci. Lett. 21 (2002), pp. 1935–1937. doi: 10.1023/A:1021608614004
  • A. Devaraj, R.E.A. Williams, S. Nag, R. Srinivasan, H.L. Fraser, and R. Banerjee, Three-dimensional morphology and composition of omega precipitates in a binary titanium–molybdenum alloy, Scr. Mater. 61 (2009), pp. 701–704. doi: 10.1016/j.scriptamat.2009.06.006
  • S. Nag, R. Banerjee, R. Srinivasan, J.Y. Hwang, M. Harper, and H.L. Fraser, ω-Assisted nucleation and growth of α precipitates in the Ti–5Al–5Mo–5V–3Cr–0.5 Fe β titanium alloy, Acta Mater. 57 (2009), pp. 2136–2147. doi: 10.1016/j.actamat.2009.01.007
  • F. Sun, F. Prima, and T. Gloriant, High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor, Mater. Sci. Eng. A 527 (2010), pp. 4262-4269. doi: 10.1016/j.msea.2010.03.044
  • A. Devaraj, S. Nag, R. Srinivasan, R.E.A. Williams, R. Banerjee, and H.L. Fraser, Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys, Acta Mater. 60 (2012), pp. 596–609. doi: 10.1016/j.actamat.2011.10.008
  • J. Schelten and W. Schmatz, Multiple-scattering treatment for small-angle scattering problems, J. Appl. Cryst. 13 (1980), pp. 385–390. doi: 10.1107/S0021889880012356
  • W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical Recipes. Cambridge University Press, Cambridge, 1986.
  • J.M. Schneider, B. Schönfeld, B. Demé, and G. Kostorz, Shape of precipitates in Ni-Al-Mo single crystals, J. Appl. Cryst. 33 (2000), pp. 465–468. doi: 10.1107/S0021889800099969
  • K. Momma and F. Izumi, VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data, J. Appl. Crystallogr. 44 (2011), pp. 1272–1276. doi: 10.1107/S0021889811038970
  • J.S. Pedersen, Determination of size distribution from small-angle scattering data for systems with effective hard-sphere interactions, J. Appl. Cryst. 27 (1994), pp. 595–608. doi: 10.1107/S0021889893013810
  • J.S. Pedersen and P. Schurtenberger, Scattering functions of semiflexible polymers with and without excluded volume effects, Macromolecules 29 (1996), pp. 7602–7612. doi: 10.1021/ma9607630
  • J. Šmilauerová, Phase transformations in modern titanium alloys, Ph.D. diss., Department of Physics of Materials, Faculty of Mathematics and Physics, Charles University, Prague, 2016.
  • J. Šmilauerová, J. Pospíšil, P. Harcuba, V. Holý, and M. Janeček, Single crystal growth of TIMETAL LCB titanium alloy by a floating zone method, J. Cryst. Growth 405 (2014), pp. 92–96, doi: 10.1016/j.jcrysgro.2014.07.050
  • K. Lieutenant, P. Lindner, and R. Gähler, A new design for the standard pinhole small-angle neutron scattering instrument D11, J. Appl. Cryst. 40 (2007), pp. 1056–1063. doi: 10.1107/S0021889807038253
  • P. Strunz, J. Šaroun, U. Keiderling, A. Wiedenmann, and R. Przenioslo, General formula for determination of cross-section from measured SANS intensities, J. Appl. Cryst. 33 (2000), pp. 829–833. doi: 10.1107/S0021889899013382
  • J. Šmilauerová, P. Harcuba, J. Pospíšil, Z. Matěj, and V. Holý, Growth of ω inclusions in Ti alloys: an X-ray diffraction study, Acta Mater. 61 (2013), pp. 6635–6645. doi: 10.1016/j.actamat.2013.07.059
  • T. Sakamoto, K. Nakai, M. Maeda, and S. Kobayashi, Variation of hardness with microstructure evolutions in metastable β titanium alloy TIMETAL® LCB, Mater. Sci. Forum 561-565 (2007), pp. 2067–2070. doi: 10.4028/www.scientific.net/MSF.561-565.2067
  • Y. Zheng, R. Williams, J.M. Sosa, T. Alam, Y. Wang, R. Banerjee, H.L. Fraser, The indirect influence of the ω phase on the degree of refinement of distributions of the α phase in metastable β-titanium alloys, Acta Mater. 103 (2016), pp. 165–173. doi: 10.1016/j.actamat.2015.09.053
  • J. Šmilauerová, M. Janeček, P. Harcuba, J. Stráský, J. Veselý, R. Kužel, and H.J. Rack, Ageing response of sub-transus heat treated Ti–6.8Mo–4.5Fe–1.5Al alloy, J. Alloys Compounds 724 (2017), pp. 373-380. doi: 10.1016/j.jallcom.2017.07.036
  • J. Coakley, B.S. Seong, D. Dye, and M. Ohnuma, Isothermal omega kinetics in beta-titanium alloys, Philos. Mag. Lett. 97 (2017), pp. 83-91. doi: 10.1080/09500839.2017.1282633
  • L. Hadjadj, M.H. Campagnac, A. Vassel, and A. Menand, Atom-probe and TEM study of the isothermal ω and secondary α phases in a Ti -10 V -2 Fe -3 Al alloy, Microscopy Microanalysis Microstructures 3 (1992), pp. 471-482. doi: 10.1051/mmm:0199200306047100

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.