158
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Effects of Kr and Xe ion irradiation on the structure of Y2O3 nanoprecipitates in YBCO thin film conductors

, , , , , & show all
Pages 3127-3142 | Received 16 May 2018, Accepted 03 Sep 2018, Published online: 11 Sep 2018

References

  • I. Monnet, P. Dubuisson, Y. Serruys, M.O. Ruault, O. Kaïtasov, and B. Jouffrey, Microstructural investigation of the stability under irradiation of oxide dispersion strengthened ferritic steels, J. Nucl. Mat. 335 (2004), pp. 311–321. doi: 10.1016/j.jnucmat.2004.05.018
  • K. Verbist, A. L. Vasiliev, and G. Tendeloo, Y2o3 inclusions in YBa2Cu3O7-δ thin films, Appl. Phys. Lett. 66 (1995), pp. 1424–1427. doi: 10.1063/1.113266
  • Y.Q. Li, J. Zhao, C.S. Chern, P. Lu, T.R. Chien, B. Gallois, P. Norris, B. Kear, and F. Cosandey, Effects of Y2O3 precipitates on critical current anisotropy in YBa2Cu3O7-x thin films prepared by plasma enhanced metalorganic vapor deposition, Appl. Phys. Lett. 60 (1992), pp. 2430–2432. doi: 10.1063/1.106995
  • P. Lu, Y. Q. Li, J. Zhao, C. S. Chern, B. Gallois, P. Norris, B. Kear, and F. Cosandey, High density, ultrafine precipitates in YBa2Cu3O7-x thin films prepared by plasma-enhanced metalorganic chemical vapor deposition, Appl. Phys. Lett. 60 (1992), pp. 1265–1267. doi: 10.1063/1.107341
  • B. Roas, B. Hensel, S. Henke, S. Klaumünzer, B. Kabius, W. Watanabe, G. Saemann-Ischenko, L. Schultz, and K. Urban, Effects of 173 MeV 129Xe ion irradiation on epitaxial YBa2Cu3Ox films, Eurphys. Lett. 11 (1990), pp. 669–674. doi: 10.1209/0295-5075/11/7/015
  • R. Weinstein, D. Parks, R.-P. Sawh, B. Mayes, A. Gandini, A. Goyal, Y. Chen, and V. Selvamanickam, Effects on Jc of pinning center morphology for multiple-in-line-damage in coated conductor and bulk, melt-textured HTS, Physica C 469 (2009), pp. 2068–2076. doi: 10.1016/j.physc.2009.08.015
  • E.I. Suvorova, M. Cantoni, P.A. Buffat, A.Y. Didyk, L.K. Antonova, A.V. Troitskii, and G.N. Mikhailova, Structure analysis of the YBCO layer in Ag/YBCO/metal oxide buffer/Hastelloy composite tape before and after 107 MeV Kr17+ irradiation, Acta Mat. 75 (2014), pp. 71–79.
  • D.C. Johnston, A.J. Jacobson, J.M. Newsam, J. T. Lewandowski, D.P. Goshorn, D. Xie, and W.B. Yelon, Variation in the Structural, Magnetic, and Superconducting Properties of YBa2Cu3O7-x with Oxygen Content. Chapter 14. ACS Symposium Series, 351 (1987), pp. 136–151.
  • M.G. Paton, and E.N. Maslen, A refinement of the crystal structure of yttria, Acta Cryst. 19 (1965), pp. 307–310. doi: 10.1107/S0365110X65003365
  • V. Swamy, N.A. Dubrovinskaya, and L.S. Dubrovinsky, High-temperature powder X-ray diffraction of yttria to melting point, Mater. Res. 14 (1999), pp. 456–459. doi: 10.1557/JMR.1999.0065
  • V. Swamy, H.J. Seifert, F. Aldinger, Thermodynamic properties of Y2O3 phases and the yttrium–oxygen phase diagram, J. Alloys Comp. 269 (1998), pp. 201–207. doi: 10.1016/S0925-8388(98)00245-X
  • T. Atou, K. Kusaba, K. Fukuoka, M. Kikuchi, and Y. Syono, Shock-induced phase transition of M203 (M = Sc, Y, Sm, Gd, and In) - type compounds, J. Solid State Chem. 89 (1990), pp. 378–384. doi: 10.1016/0022-4596(90)90280-B
  • M. K. Lee, E.K. Park, J. J. Park, and C.K. Rhee, Control of Y2O3 phase and its nanostructure formation through a very high energy mechanical milling, J. Solid State Chem. 201 (2013), pp. 56–62. doi: 10.1016/j.jssc.2013.02.011
  • W. Krauss, and R. Birringer, Metastable phases synthesized by inert-gas-condensation, Nanostruct. Mater. 9 (1–8) (1997), pp. 109–112. doi: 10.1016/S0965-9773(97)00030-5
  • G. Skandan, C.M. Foster, H. Frase, M.N. Ali, J.C. Parker, and H. Hahn, Phase characterization and stabilization due to grain size effects of nanostructured Y2O3, Nanostruct. Mater. 1 (1992), pp. 313–322. doi: 10.1016/0965-9773(92)90038-Y
  • B. Guo, M. Mukundan, and H. Yim, Flame aerosol synthesis of phase-pure monoclinic Y2O3 particles via particle size control, Powder Technol. 191 (2009), pp. 231–234. doi: 10.1016/j.powtec.2008.11.003
  • P. Zhang, A. Navrotsky, B. Guo, I. Kennedy, A.N. Clark, C. Lesher, and Q. Liu, Energetics of cubic and monoclinic yttrium oxide polymorphs: phase transitions, surface enthalpies, and stability at the nanoscale, J. Phys. Chem. C 112 (2008), pp. 932–938. doi: 10.1021/jp7102337
  • H.R. Hoekstra, and K.A. Gingerich, High-Pressure B-type polymorphs of some rare-earth sesquioxides, Science, 146 (1964), pp. 1163–1164. doi: 10.1126/science.146.3648.1163
  • S. Hémon, C. Dufour, A. Berthelot, F. Gourbilleau, E. Paumier, and S. Bégin-Colin, Structural transformation in two yttrium oxide powders irradiated with swift molybdenum ions, Nucl. Instr. Meth. Sect. B, 166–167 (2000), pp. 339–344.
  • S. Hémon, A. Berthelot, C. Dufour, F. Gourbilleau, E. Dooryhée, S. Bégin-Colin, and E. Paumier, Influence of the crystallite size on the phase transformation of yttria irradiated with swift heavy ions, Eur. Phys. J. B 19 (2001), pp. 517–523. doi: 10.1007/PL00011090
  • S. Hémon, C. Dufour, F. Gourbilleau, E. Paumier, E. Dooryhée, and S. Bégin-Colin, Influence of the grain size: yttrium oxide irradiated with swift heavy ions, Nucl. Instr. Meth. Sect. B, 146 (1998), pp. 443–448. doi: 10.1016/S0168-583X(98)00479-0
  • S. Hémon, V, Chailley, E. Dooryhée, C. Dufour, F. Gourbilleau, F. Levesque, and E. Paumier, Phase transformation of polycrystalline Y2O3 under irradiation with swift heavy ions, Nucl. Instr. Meth. Sect. B 122 (1997), pp. 563–565.
  • R.J. Gaboriaud, M. Jublot, F. Paumier, and B. Lacroix, Phase transformations in Y2O3 thin films under swift Xe ions irradiation, Nucl. Instr. Meth. Phys. Res. Sect. B 310 (2013), pp. 6–9. doi: 10.1016/j.nimb.2013.05.014
  • S. Som, S.K. Sharma, S.P. Lochab, Ion induced modification of band gap and CIE parameters in Y2O3:Dy3+ phosphor, Ceram. Int. 39 (2013), pp. 7693–7701. doi: 10.1016/j.ceramint.2013.03.022
  • S. Som, S.K. Sharma, and S.P. Lochab, Swift heavy ion induced structural and optical properties of Y2O3:Eu3+ nanophosphor, Mater. Res. Bull. 48 (2013), pp. 844–851. doi: 10.1016/j.materresbull.2012.11.079
  • S. Som, S. Das, S. Dutta, M.K. Pandey, R.K. Dubey, H.G. Visser, S.K. Sharma, and S.P. Lochab, A comparative study on the influence of 150 MeV Ni7+, 120 MeV Ag9+, and 110 MeV Au8+ swift heavy ions on the structural and thermoluminescence properties of Y2O3: Eu3+/Tb3+ nanophosphor for dosimetric applications, J. Mater. Sci. 51 (2016), pp. 1278–1291. doi: 10.1007/s10853-015-9376-3
  • N. Mejai, A. Debelle, L. Thomé, G. Sattonnay, D. Gosset, A. Boulle, R. Dargis, and A. Clark, Depth-dependent phase change in Gd2O3 epitaxial layers under ion irradiation, Appl. Phys. Lett. 107 (2015), no. 131903. doi: 10.1063/1.4932089
  • T. Steinbach, T. Bierschenk, S. Milz, M.C. Ridgway, and W. Wesch, Swift heavy ion irradiation of crystalline CdTe, J. Phys. D: Appl. Phys. 47 (2015), no. 065301.
  • N. Khalfaoui, J.P. Stoquert, F. Haas, C. Traumann, A. Meftah, and M. Toulemonde, Damage creation threshold of Al2O3 under swift heavy ion irradiation, Nucl. Instr. Meth. B 286 (2012), pp. 247–253.
  • A.H. Mir, I. Monnet, M. Toulemonde, S. Bouffard, C. Jegou, and S. Peuget, Mono and sequential ion irradiation induced damage formation and damage recovery in oxide glasses: stopping power dependence of the mechanical properties, J. Nucl. Mater. 469 (2016), pp. 244–250. doi: 10.1016/j.jnucmat.2015.12.004
  • J.-M. Costantini, C. Trautmann, L. Thome, J. Jagielski, and F. Beuneu, Swift heavy ion-induced swelling and damage in yttria-stabilized zirconia, J. Appl. Phys. 101(2007), no. 073501. doi: 10.1063/1.2714651
  • K. Nakano, H. Yoshizaki, Y. Saitoh, N. Ishikawa, and A. Iwase, XRD study of yttria stabilized zirconia irradiated with 7.3 MeV Fe, 10 MeV I, 16 MeV Au, 200 MeV Xe and 2.2 GeV Au ions, Nucl. Instrum. Methods Phys. Res. Sect. B 370 (2016), pp. 67–72. doi: 10.1016/j.nimb.2016.01.006
  • S. Stichleutner, E. Kuzmann, K. Havancsák, Z. Homonnay, A. Vértes, O. Doyle, M. El-Sharif, and C.U. Chisholm, Mössbauer studies of the effect of swift heavy ion irradiation on electrodeposited Sn-Co-Fe coatings, J. Phys. Conf. Ser. 217 (2010), no. 012100. doi: 10.1088/1742-6596/217/1/012100
  • T. Aruga, Y. Katano, T. Ohmichi, S. Okayasu, and Y. Kazumata, Amorphization behaviors in polycrystalline alumina irradiated with energetic iodine ions, Nucl. Instrum. Meth. Phys. Res. Sect. B 166–167, (2000), pp. 913–919.
  • V.A. Skuratov, A.S. Sohatsky, J.H. O’Connell, K. Kornieieva, A.A. Nikitina, J.H. Neethling, and V.S. Ageev, Swift heavy ion tracks in Y2Ti2O7 nanoparticles in EP450 ODS steel, J. Nucl. Mater. 456 (2015), pp. 111–114. doi: 10.1016/j.jnucmat.2014.09.034
  • J.F. Ziegler and J.P. Biersack, 2013, SRIM (The stopping and range of ions in matter) software available at http://www.srim.org/SRIM/SRIMLEGL.htm
  • P. Stadelmann 2017 JEMS, Java (Electron Microscopy Software); software available at http://www.jems-saas.ch
  • T. Atou, K. Kusaba, K. Fukuoka, M. Kikuchi, K. Fukuoka, and Y. Syono, Shock-induced phase transition of M2O3 (M = Sc, Y, Sm, Gd, and In)-type compounds, J. Solid State Chem. 89 (1990), pp. 378–384. doi: 10.1016/0022-4596(90)90280-B
  • V. Srikanth, A. Sato, J. Yoshimoto, J.H. Kim, and T. Ikegami, Synthesis and crystal structure study of Y2O3 high-pressure polymorph, Cryst. Res. Technol. 29 (1994), pp. 981–984. doi: 10.1002/crat.2170290712
  • J. Zhang, H. Cui, P. Zhu, C. Ma, X. Wu, H. Zhu, Y. Ma, and Q. Cui, Photoluminescence studies of Y2O3: Eu(3+) under high pressure, J. Appl. Phys. 115 (2014) no. 023502.
  • T.A. Tombrello, Columnar track damage in YBCO, Nucl. Instr. Meth. Sect. B 95 (1995), pp. 232–234. doi: 10.1016/0168-583X(94)00425-0
  • E.A. Little, D.J. Mazey, W. Hanks, Effects of ion irradiation on the microstructure of an oxide-dispersion-strengthened ferritic steel, Scr. Metall. Mater. 25 (1991), pp. 1115–1118. doi: 10.1016/0956-716X(91)90512-Y
  • A. Guinier, X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Dover Publications, New York, 1994.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.