246
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Damage mechanism of nickel-based creep-resistant alloys strengthened by the Laves phase at the grain boundary

&
Pages 3247-3266 | Received 08 May 2018, Accepted 11 Sep 2018, Published online: 25 Sep 2018

References

  • R. Viswanathan, J.F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, and P. Purgert, U.S. program on materials technology for ultra-supercritical coal power plants, J. Mater. Eng. Peform. 14 (2005), pp. 281–292. doi: 10.1361/10599490524039
  • M. Fukuda, E. Saito, Y. Tanaka, T. Takahashi, S. Nakamura, J. Iwasaki, S. Takano, and S. Izumi, Advanced USC technology development in Japan, Proc. 6th Int. Conf. on Advanced in Materials Technology for Fossil Power Plants, EPRI, CA, 2010, pp. 325–341.
  • M. Fukuda, Advanced USC technology development in japan, Proc. of 9th Liége Conference, 2010, pp. 5–19.
  • L.J. Park, H.J. Ryu, S.H. Hong, and Y.G. Kim, Microstructure and mechanical behavior of mechanically alloyed ODS Ni-base superalloy for aerospace gas turbine application, Adv. Perform. Mater. 5 (1998), pp. 279–290. doi: 10.1023/A:1008653015451
  • C.T. Sims, A history of superalloy metallurgy for superalloy metallurgists, Superalloys (1984), pp. 399–419.
  • H. Harada, Ni-base superalloys and new materials: Present status and possibilities in future, J. Gas Turb. Soc. Jap. 28 (2000), pp. 278–284.
  • Z. Mazur, A. Luna-Ramırez, J.A. Juárez-Islas, and A. Campos-Amezcua, Failure analysis of a gas turbine blade made of inconel 738LC alloy, engineering failure analysis, Eng. Fail. Anal. 12 (2005), pp. 474–486. doi: 10.1016/j.engfailanal.2004.10.002
  • P. Henderson and J. Komenda, A metallographic technique for high temperature creep damage assessment in single crystal alloys, J. Engin Gas Turb Power, 121 (1999), pp. 683–686. doi: 10.1115/1.2818526
  • K. Kusabiraki, H. Toda, H. Komatsu, and S. Saji, Precipitation behaviors of γ’, ε and η phases in Fe–Ni–Co–Nb based superalloys, Tetsu-to-Hagane 84 (1998), pp. 664–671. doi: 10.2355/tetsutohagane1955.84.9_664
  • A. M. Babakr, A. Al-Ahmari, K. Al-Jumayiah, and F. Habiby, Sigma phase formation and embrittlement of cast iron-chromium-nickel (Fe–Cr–Ni) alloys, J. Min. Mater. Char. Eng. 7 (2008), pp. 127–145.
  • T. Sugui, Z. Huihua, Z. Jinghua, Y. Hongcai, X. Yongbo, and H. Zhuangqi, Formation and role of dislocation networks during high temperature creep of a single crystal nickel-base superalloy, Mater. Sci. Eng. A 279 (2000), pp. 160–165. doi: 10.1016/S0921-5093(99)00623-1
  • S. Walston, A. Cetel, R. MacKay, K. O'Hara, D. Duhl, and R. Dreshfield, Joint development of a fourth generation. Single crystal superalloy, Superalloys 2004, (2004), pp. 15–24.
  • B. Dyson, Use of CDM in materials modeling and component creep life prediction, J. Pressure Vessel Technol. 122 (2000), pp. 281–296. doi: 10.1115/1.556185
  • B. Dyson, Creep and fracture of metals: Mechanisms and mechanics, Rev. Phys. Appl. 23 (1988), pp. 605–613. doi: 10.1051/rphysap:01988002304060500
  • B. Dyson and M. McLean, Particle-coarsening, σ0 and tertiary creep, Acta. Metall. 31 (1983), pp. 17–27. doi: 10.1016/0001-6160(83)90059-7
  • J. Coakley, D. Dye, and H. Basoalto, Creep and creep modelling of a multimodal nickel-base superalloy, Acta Mater. 59 (2011), pp. 854–863. doi: 10.1016/j.actamat.2010.08.035
  • A. Manonukul, F.P.E. Dunne, and D. Knowles, Physically-based model for creep in nickel-base superalloy C263 both above and below the gamma solvus, Acta Mater. 50 (2002), pp. 2917–2931. doi: 10.1016/S1359-6454(02)00119-2
  • S. Zhao, X. Xie, G.D. Smith, and S. J. Patel, Microstructural stability and mechanical properties of a new nickel-based superalloy, Mater. Sci. Eng. A 355 (2003), pp. 96–105. doi: 10.1016/S0921-5093(03)00051-0
  • M. Maldini, G. Angella, and V. Lupinc, Analysis of creep curves of a nickel base superalloy in a wide stress/temperature range, Mater. Sci. Eng. A 462 (2007), pp. 436–440. doi: 10.1016/j.msea.2005.11.084
  • J. Klöwer, R.U. Husemann, and M. Bader, Development of nickel alloys based on alloy 617 for components in 700°C power plants, Procedia Eng. 55 (2013), pp. 226–231. doi: 10.1016/j.proeng.2013.03.247
  • X. Xie, S. Zhao, J. Dong, G.D. Smith, B.A. Baker, and S.L. Paatel, Fifth International Conference on Advances in Materials Technology for Fossil Power Plants, 2007, 3A-06, EPRI.
  • M. Yonemura, H. Semba, and M. Igarashi, Development of microstructural damage in Ni-based alloys during creep, Metal. Mater. Trans. A 47 (2016), pp. 1898–1905. doi: 10.1007/s11661-016-3346-5
  • M. Yonemura, T. Hamaguchi, H. Semba, and M. Igarashi , Proc. 12th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, JIM, Sendai, 2011, CD-ROM.
  • I. Tarigan, N. Takata, and M. Takeyama , Proc. 12th Int. Conf. on Creep and Fracture of Engineering Materials and Structures, JIM, Sendai, 2011, CD-ROM.
  • N. Takata, T. Matsuo, and M. Takeyama , Rep. 123rd Committee on Heat-Resisting Mater. Alloys Jpn. Soc. Promotion Sci., 2009, vol. 50, pp. 389.
  • S. Okamoto, T. Matsuo, and M. Takeyama , Rep. 123rd Committee on Heat-Resisting Mater. Alloys Jpn. Soc. Promotion Sci., 2007 vol. 48, pp. 13.
  • J.-C. Zhao, V. Ravikumar, and A.M. Beltran, Phase precipitation and phase stability in nimonic 263, Metal. Mater. Trans. A 32 (2001), pp. 1271–1282. doi: 10.1007/s11661-001-0217-4
  • H. Nickel, Characterization of metallic and ceramic high temperature materials for energy systems by means of atomic spectroscopy, Pure Appl. Chem. 65 (1993), pp. 2481–2500. doi: 10.1351/pac199365122481
  • M. Yamaguchi, First-principles calculations of the grain-boundary cohesive energy-embrittling or strengthening effect of solute segregation in a bcc FeΣ3(111) grain boundary, J. Japan Inst. Metals 72 (2008), pp. 657–666. doi: 10.2320/jinstmet.72.657
  • M. Hillert, Application of the Gibbs energy-composition diagrams, in Lectures on the Theory of Phase Transformation, Aaronson H.I., eds., TMS-AIME, Warrendale, PA, 1975
  • J.J. Schirra, R.H. Caless, and R.W. Hatrala, The effect of laves phase on the mechanical properties of wrought and cast + HIP INCONEL 718, Superalloy, (1991), pp. 375–388.
  • T. Ito, S. Yamazaki, M. Mitsuhara, H. Nakajima, M. Nishida, and M. Yonemura, Microstructure and creep property in polycrystalline Ni-based alloy with intergranular intermetallics, Tetsu-to-Hagane 103 (2017), pp. 434–442.
  • T. Ito, S. Yamasaki, M. Mitsuhara, M. Nishida, and M. Yonemura, Effect of intergranular carbides on creep strength in nickel-based heat-resistant alloys, Mater. Trans. 58 (2017), pp. 52–58. doi: 10.2320/matertrans.M2016291
  • Y. Uedate, R. Miyazaki, and E. Yajima, On the mechanism of high temperature steady state creep of Ni-base alloy containing γ’ particles, J. Japan Inst. Met. Mater. 37 (1973), pp. 1180–1189. doi: 10.2320/jinstmet1952.37.11_1180
  • A. H. Chokshi, Unusual stress and grain size dependence for creep in nanocrystalline materials, Scripta Mater. 61 (2009), pp. 96–99. doi: 10.1016/j.scriptamat.2009.03.009
  • R.D. Doherty, Role of interfaces in kinetics of internal shape changes, Met. Sci. 16 (1982), pp. 1–14. doi: 10.1179/030634582790427019
  • E. Hata and Y. Baba, Control of PFZ and precipitation along grain boundaries, J. Japan Inst. Met. Mater. 18 (1979), pp. 478–482.
  • H. Okuda and S. Ochiai, The effects of solute and vacancy depletion on the formation of precipitation-free zone in a model binary alloy examined by a Monte Carlo simulation, Mater. Trans. 45 (2004), pp. 1455–1460. doi: 10.2320/matertrans.45.1455
  • M. Abe, K. Asano, and A. Fujiwara, Influence of the precipitate-free zone width on the tensile properties of an Al-6 Wt pct Zn-1.2 Wt pct Mg alloy, Met. Trans. 4 (1973), pp. 1499–1505.
  • Y. Baba, Effects of additional elements and heat treatments on the fracture characteristics of Al–Zn–Mg alloy, Trans. JIM. 11 (1970), pp. 404–410. doi: 10.2320/matertrans1960.11.404
  • S. Yamasaki, M. Mitsuhara, H. Nakashima, and M. Yonemura, Evaluation of local creep strain in face-centred cubic heat-resistant alloys using electron backscattered diffraction analysis, ISIJ Inter. 57 (2017), pp. 851–856. doi: 10.2355/isijinternational.ISIJINT-2016-712

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.