189
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

A hybrid phenomenological model for thermo-mechano-electrical creep of 1–3 piezocomposites

&
Pages 1-21 | Received 22 May 2018, Accepted 16 Sep 2018, Published online: 02 Oct 2018

References

  • R.E. Newnham and G.R. Ruschau, Smart electroceramics, J. Am. Ceram. Soc. 74(3) (1991), pp. 463–480.
  • P. Wiwattananon, O.K. Bergsma, and H.E.N. Bersee, Understanding piezoelectric composite-based actuators with nonlinear and 90 domain walls effects, J. Intell. Mater. Syst. Struct. 27(13) (2016), pp. 1738–1754.
  • D. Croft, G. Shed, and S. Devasia, Creep, hysteresis, and vibration compensation for piezoactuators: Atomic force microscopy application, J. Dyn. Syst. Meas. Control 123(1) (2001), pp. 35–43.
  • Q.D. Liu and J.E. Huber, Inhomogeneous creep fields in PLZT: An experimental study, in Behavior and Mechanics of Multifunctional and Composite Materials 2008, M.J. Dapino and Z. Ounaies, eds., Vol. 6929, International Society for Optics and Photonics, San Diego, CA, 2008, p. 69290B.
  • M. Kamlah, Ferroelectric and ferroelastic piezoceramics-modeling of electromechanical hysteresis phenomena, Continuum Mech. Therm. 13(4) (2001), pp. 219–268.
  • X. He, D. Wang, L. Wang, and R. Melnik, Modelling of creep hysteresis in ferroelectrics, Philos. Mag. 98(14) (2018), pp. 1256–1271.
  • P. Ge and M. Jouaneh, Modeling hysteresis in piezoceramic actuators, Precis. Eng. 17(3) (1995), pp. 211–221.
  • H.J.M.T.S. Adriaens, W.L. De Koning, and R. Banning, Modeling piezoelectric actuators, IEEE ASME Trans. Mechatron. 5(4) (2000), pp. 331–341.
  • S.-H. Lee and T.J. Royston, Modeling piezoceramic transducer hysteresis in the structural vibration control problem, J. Acoust. Soc. Am. 108(6) (2000), pp. 2843–2855.
  • Q.D. Liu and J.E. Huber, Creep in ferroelectrics due to unipolar electrical loading, J. Eur. Ceram. Soc. 26(13) (2006), pp. 2799–2806.
  • D. Zhou and M. Kamlah, Determination of room-temperature creep of soft lead zirconate titanate piezoceramics under static electric fields, J. Appl. Phys. 98(10) (2005), p. 104107.
  • A.Y. Belov and W.S. Kreher, Creep in soft PZT: The effect of internal fields, Ferroelectrics 391(1) (2009), pp. 12–21.
  • H. Jung and D.G. Gweon, Creep characteristics of piezoelectric actuators, Rev. Sci. Instrum. 71(4) (2000), pp. 1896–1900.
  • D. Zhou and M. Kamlah, Room-temperature creep of soft PZT under static electrical and compressive stress loading, Acta Mater. 54(5) (2006), pp. 1389–1396.
  • O. Guillon, F. Thiébaud, P. Delobelle, and D. Perreux, Compressive creep of PZTceramics: Experiments and modelling, J. Eur. Ceram. Soc. 24(9) (2004), pp. 2547–2552.
  • R. Pramanik and A. Arockiarajan, Electro-mechanical creep of 1–3 piezocomposites: Theoretical modeling and experimental approach, Ceram. Int. 44 (2018), pp. 13934–13943.
  • D. Guyomar, B. Ducharne, and G. Sebald, Time fractional derivatives for voltage creep in ferroelectric materials: Theory and experiment, J. Phys. D Appl. Phys. 41(12) (2008), p. 125410.
  • C.S. Lynch, The effect of uniaxial stress on the electro-mechanical response of 8/65/35 PLZT, Acta Mater. 44(10) (1996), pp. 4137–4148.
  • T. Fett and G. Thun, Determination of room-temperature tensile creep of PZT, J. Mater. Sci. Lett. 17(22) (1998), pp. 1929–1931.
  • S.J. Kim and D.W. Ji, Temperature-dependent compressive creep of ferroelectric ceramics and evolution of remnant state variables, J. Eur. Ceram. Soc. 33(10) (2013), pp. 1779–1792.
  • R. Pramanik and A. Arockiarajan, Experimental and theoretical studies on mechanical creep of 1–3 piezocomposites, Acta Mech. 229 (2018), pp. 1–12.
  • P. Zhao, Y. Cao, and J. Li, Nonlinear electromechanical coupling behavior of 1–3 piezoelectric composites, Acta Mater. 59(14) (2011), pp. 5534–5543.
  • K.S. Challagulla and T.A. Venkatesh, Electromechanical response of 2–2 layered piezoelectric composites: A micromechanical model based on the asymptotic homogenization method, Philos. Mag. 89(14) (2009), pp. 1197–1222.
  • W.A. Smith, Composite piezoelectric materials for medical ultrasonic imaging transducers—A review, Sixth IEEE International Symposium on Applications of Ferroelectrics, Bethlehem, PA, IEEE, 1986, pp. 249–256.
  • Y. Zhang, T.-F. Lu, and W. Gao, Equivalent homogeneous model of d31-mode longitudinal piezoelectric transducers, J. Intell. Mater. Syst. Struct. 28(19) (2017), pp. 2651–2658.
  • A.H. Muliana, A micromechanical formulation for piezoelectric fiber composites with nonlinear and viscoelastic constituents, Acta Mater. 58(9) (2010), pp. 3332–3344.
  • R. Jayendiran and A. Arockiarajan, Modeling of dielectric and piezoelectric response of 1–3 type piezocomposites, J. Appl. Phys. 112(4) (2012), p. 044107.
  • G.M. Odegard, Constitutive modeling of piezoelectric polymer composites, Acta Mater. 52(18) (2004), pp. 5315–5330.
  • R. Jayendiran and A. Arockiarajan, Numerical modelling and experimental characterization of temperature-dependent viscoelastic effect on the ferroelastic behaviour of 1–3 piezocomposites, Sens. Actuators A Phys. 226 (2015), pp. 81–97.
  • R. Jayendiran and A. Arockiarajan, Modeling and experimental characterization on temperature-dependent ferroelastic switching of 1–3 type piezocomposites, Int. J. Eng. Sci. 68 (2013), pp. 61–74.
  • S. Stark, P. Neumeister, and H. Balke, A hybrid phenomenological model for ferroelectroelastic ceramics. Part I: Single phased materials, J. Mech. Phys. Solids 95 (2016), pp. 774–804.
  • D. Zhou, M. Kamlah, and D. Munz, Effects of bias electric fields on the non-linear ferroelastic behavior of soft lead zirconate titanate piezoceramics, J. Am. Ceram. Soc. 88(4) (2005), pp. 867–874.
  • S.M. Subhani, S. Maniprakash, and A. Arockiarajan, Nonlinear magneto-electro-mechanical response of layered magneto-electric composites: Theoretical and experimental approach, Acta Mech. 228 (2017), pp. 3185–3201.
  • C. Jarzynski, Microscopic analysis of Clausius–Duhem processes, J. Stat. Phys. 96(1) (1999), pp. 415–427.
  • W. Cai, W. Chen, and W. Xu, Characterizing the creep of viscoelastic materials by fractal derivative models, Int. J. Non-Linear Mech. 87 (2016), pp. 58–63.
  • X. Su, W. Chen, and W. Xu, Characterizing the rheological behaviors of non-Newtonian fluid via a viscoelastic component: Fractal dashpot, Adv. Mech. Eng. 9(10) (2017), p. 1687814017699765.
  • R. Jayendiran and A. Arockiarajan, Viscoelastic modeling and experimental characterization of thermo-electromechanical response of 1–3 piezocomposites, J. Appl. Phys. 116(21) (2014), p. 214103.
  • U. Welzel, S. Fréour, and E.J. Mittemeijer, Direction-dependent elastic grain-interaction models—A comparative study, Philos. Mag. 85(21) (2005), pp. 2391–2414.
  • A. Vuppuluri and S. Vedantam, Theory and simulation of coupled grain boundary migration and grain rotation in low angle grain boundaries, Philos. Mag. 97(35) (2017), pp. 3325–3342.
  • S. Maniprakash, A. Arockiarajan, and A. Menzel, A multi-surface model for ferroelectric ceramics—application to cyclic electric loading with changing maximum amplitude, Philos. Mag. 96(13) (2016), pp. 1263–1284.
  • Y. Mohan and A. Arockiarajan, Experimental and theoretical investigation of temperature-dependent electrical fatigue studies on 1–3 type piezocomposites, AIP Adv. 6(3) (2016), p. 035311.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.