204
Views
1
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Multiferroic and exchange bias in La0.85Sr0.15FeO3−δ perovskite nanoparticles

, &
Pages 22-37 | Received 24 Jul 2017, Accepted 04 Sep 2018, Published online: 29 Sep 2018

References

  • S. Acharya, J. Mondal, S. Ghosh, S.K. Roy, and P.K. Chakrabarti, Multiferroic behavior of lanthanum orthoferrite (LaFeO3), Mater. Lett. 64 (2010), pp. 415–418.
  • M. T. Jamil, J. Ahmad, M. Saleem, and S. M. Ramay, Phonons lattice dynamics and transport properties of multiferroic LaFeO3, J. Ovonic Research. 12 (2016), pp. 113–120.
  • M. A. Ahmed, S. I. El-Dek, E. Dhahri, and M. M. Arman, New multiferroic nanoparticles LaFe1-yO3, Adv. Appl. Sci. Res. 5(3) (2014), pp. 370–388.
  • V. Sharma, A. Singh, L. Singh. M. Singh, and S. K. Mishra, Compositional-driven multiferroic properties in samarium substituted LaFeO3-PbTiO3 solid solutions, Int. J. Appl. Ceram. Technol. 14 (2017), pp. 260–268.
  • E. Swatsitang, A. Karaphun, S. Phokha, S. Hunpratub, and T. Putjuso, Investigation of structural, morphological, optical, and magnetic properties of Sm-doped LaFeO3 nanopowders prepared by sol–gel method, J. Sol-Gel Sci. Technol. 81 (2017), pp. 483–493.
  • Y. K, Tang, Y. Sun, and Z. H. Cheng, Exchange bias associated with phase separation in the perovskite cobaltite La1−xSrxCoO3, Phys. Rev. B. 73 (2006), pp. 174419–6.
  • Y-Y. Yang, Effect of magnetic field and temperature on the exchange bias in phase- separated Nd1-xSrxCoO3(x = 0.10, 0.15), Open Mater. Sci. J. 9 (2015), pp. 56–59.
  • S. Phokha, S. Pinitsoontorn, S Maensiri, and S. Rujirawat, Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method, J. Sol-Gel Sci. Technol. 71 (2014), pp. 333–341.
  • H. Ahmadvand, H. Salamati, P. Kameli, A. Poddar, M. Acet, and K. Zakeri, Exchange bias in LaFeO3 nanoparticles, J. Phys. D: Appl. Phys. 43 (2010), pp. 245002–5.
  • K. D Chandrasekhar, S. Mallesh, J. K Murthy, A. K Das, and A. Venimadhav, Role of defects and oxygen vacancies on dielectric and magnetic properties of Pb2+ ion doped LaFeO3 polycrystalline ceramics, Physica B. 448 (2014), pp. 304 –311.
  • E. K. Abdel-Khalek, Dielectric anomaly in La1−xSrxFeO3±δ perovskite nanoparticles, Ferroelectrics. 505 (2016), pp. 130–140.
  • E. K. Abdel-Khalek, E. A. Mohamed, and A. F. Salem, Study of the glassy magnetic behaviour and chargeordering phase transitions in La0.75Ca0.25FeO3−δ perovskite, Philos. Mag. 97(2017), pp. 1346–1359.
  • J. Matsuno, T. Mizokawa, A. Fujimori, Y. Takeda, S. Kawasaki, M. Takano, S. Kawasaki, and M. Takano, Different routes to charge disproportionation in perovskite-type Fe oxides, Phys. Rev. B. 66 (2002), pp. 193103.1–193103.4.
  • X. N. Ying, Charge order suppression in oxygen nonstoichiometric La1/3Sr2/3FeO3−δ, Solid State Commun. 169 (2013), pp. 20–23.
  • R. Mishra, Y-M. Kim, J. Salafranca, S. K. Kim, S. H. Chang, A. Bhattacharya, D. D. Fong, S. J. Pennycook, S. T. Pantelides, and A. Y. Borisevich, Oxygen-Vacancy-Induced polar behavior in (LaFeO3)2/(SrFeO3) superlattices, Nano Lett. 14 (2014), pp. 2694−2701.
  • P. Manimuthu, and C. Venkateswaran, Evidence of ferroelectricity in SrFeO3−δ, J. Phys. D: Appl. Phys. 45 (2012), pp. 015303.1–015303.6.
  • R. B. da Silva, J. H. de Araujo, J. M. Soares, and F. L. A. Machado, Origin of spin-glass and exchange bias in La1/3Sr2/3FeO3-γ nanoparticles, J. Appl. Phys. 115 (2014), pp. 113906–8.
  • S. Sabyasachi, M. Patra, S. Majumdar, S. Giri, S. Das, V. S. Amaral, O. Iglesias, W. Borghols, and T. Chatterji, Glassy magnetic phase driven by short-range charge and magnetic ordering in nanocrystalline La1/3Sr2/3FeO3−δ: Magnetization, Mossbauer, and polarized neutron studies, Phys. Rev. B. 86 (2012), pp. 104416–8.
  • R. Tang, C. Jiang, W. Qian, J. Jian, X. Zhang, H. Wang, and H. Yang, Dielectric relaxation, resonance and scaling behaviors in Sr3Co2Fe24O41 hexaferrite, Sci. Rep. 5 (2015), pp. 13645.
  • J-H. Xu, H. Ke, D-C. Jia, W. Wang, and Y. Zhou, Microwave-dielectric and magnetic properties of Ta-doped BiFeO3 nanopowders, Philos. Mag. Lett. 89 (2009), pp. 701–710.
  • E. K. Abdel-Khalek, and H. M. Mohamed, Synthesis, structural and magnetic properties of La1−xCaxFeO3 prepared by the co-precipitation method, Hyp. Interact. 222 (2013), pp. S57– S67.
  • Y.-Q. Liang, N.-I. Di, and Z.-H. Cheng, Charge-disproportionation-induced magnetic glassy behavior in La0.5Ca0.5FeO3, Phys. Rev. B. 72 (2005), pp. 134416.1–134416.7.
  • Y.-J. Huang, N. Chen, G.-X. Lin, and Y-F. Hsia, 57Fe and 151Eu Mossbauer study of charge disproportionation and magnetic properties in Eu1/3Sr2/3FeO3, J. Alloys Compd. 474 (2009), pp. 229–232.
  • D.V. Karpinsky, I. O. Troyanchuk, N. V. Pushkarev, A. Dziaugys, V. Sikolenko, V. Efimov, and A. L. Kholkin, Evolution of electromechanical properties of Bi1-xPrxFeO3 solid solutions across the rhombohedral–orthorhombic phase boundary: Role of covalency, J. Alloys Compd. 638 (2015), pp. 429–434.
  • K Fujii, H. Kato, K. Omoto, M Yashima, J. Chen, and X. Xingc, Experimental visualization of the Bi–O covalency in ferroelectric bismuth ferrite (BiFeO3) by synchrotron X-ray powder diffraction analysis, Phys. Chem. Chem. Phys., 15 (2013), pp. 6779–6782.
  • S. Kumari, N. Ortega, A. Kumar, S. P. Pavunny, J. W. Hubbard, C. Rinaldi, G. Srinivasan, J. F. Scott, and R. S. Katiyar, Dielectric anomalies due to grain boundary conduction in chemically substituted BiFeO3, J. Appl. Phys. 117 (2015), pp. 114102–13.
  • D. V. Karpinsky, I. O. Troyanchuk, M. V. Silibin, S. A. Gavrilov, M. V. Bushinky, V. Sikolenko, and M. Frontzek, Structure and magnetic interactions in (Sr, Sb)-doped lanthanum manganites, Physica B. 489 (2016), pp. 45–50.
  • B. Bhushan, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, and D. Das, Sr induced modification of structural, optical and magnetic properties in Bi1−xSrxFeO3 (x = 0, 0.01, 0.03, 0.05 and 0.07) multiferroic nanoparticles, Solid State Sci. 12 (2010), pp. 1063–1069.
  • M. kaur, K. L. Yadav, and P. Uniyal, Investigations on multiferroic, optical and photocatalytic properties of lanthanum doped bismuth ferrite nanoparticles, Adv. Mater. Let. 6(10) (2015), pp. 895–901.
  • U. Megha, K. Shijina, and G. Varghese, Nanosized LaCo0.6Fe0.4O3 perovskites synthesized by citrate sol gel auto combustion method, Process. Appl. Ceram. 8 (2) (2014), pp. 87–92.
  • E. K. Abdel-Khalek, Shaaban M. Salem, and I. Kashif, Synthesis, crystal structure and ferroelectric properties of SrBi2Nb2O9 embedded in a 50% Li2B4O7 glass matrix, J. Electroceram. 29 (2012), pp. 171–178.
  • Z. H. Sun, B. L. Cheng, S. Dai, L. Z. Cao, Y. L. Zhou, K. J. Jin, Z. H. Chen, and G. Z. Yang, Dielectric property studies of multiferroic GaFeO3, J. Phys. D: Appl. Phys. 39 (2006), pp. 2481–2484.
  • M. R. Biswal, J. Nanda, N. C. Mishra, S. Anwar, and A. Mishra, Dielectric and impedance spectroscopic studies of multiferroic BiFe1-xNixO3, Adv. Mat. Lett. 5(9) (2014), pp. 531–537.
  • J. B. Yang, W. B. Yelon, W. J. James, X. D. Zhou, Y. X. Xie, H. U. Anderson, and Z. Chu, Magnetic and Mössbauer studies on oxygen deficient perovskite, La0.6Sr0.4FeO3-δ, J. Appl. Phys. 91 (2002), pp. 7718–7720.
  • A. S. Mahapatra, A. Mitra, A. Mallick, M. Ghosh, and P. K. Chakrabarti, Enhanced magnetic property and phase transition in Ho3+ doped LaFeO3, Mater. Lett. 169 (2016), pp. 160–163.
  • D. Varshney, A. Kumar, and K. Verma, Effect of A site and B site doping on structural, thermal, and dielectric properties of BiFeO3 ceramics, J. Alloys Compd. 509 (2011), pp. 8421–8426.
  • M. P. Kumar, T. Sankarappa, and S. Kumar, AC conductivity studies in rare earth ions doped vanadotellurite glasses, J. Alloys Compd. 464 (2008), pp 393–398.
  • S. M. Khetre, H. V. Jadhav, P. N. Jagadale, S. R. Kulal, and S. R. Bamane, Studies on electrical and dielectric properties of LaFeO3, Adv. Appl. Sci. Res., 2 (4) (2011), pp. 503–511.
  • A. Srivastava, H. K. Singh, V. P. S. Awana, and O. N. Srivastava, Enhancement in magnetic and dielectric properties of La and Pr co substituted BiFeO3, J. Alloys Compd. 552 (2013), pp. 336–344.
  • C. Yang, C. Z. Liu, C. M. Wang, W. G. Zhang, and J. S. Jiang, Magnetic and dielectric properties of alkaline earth Ca2+ and Ba2+ ions co-doped BiFeO3 nanoparticles, J. Magn. Magn. Mater. 324 (2012), pp. 1483–1487.
  • A Perejon, N. Murafa, P. E. S-Jimenez, J. M. Criado, J Subrt, M. J. Dianez, and L. A. P-Maqueda, Direct mechanosynthesis of pure BiFeO3 perovskite nanoparticles: reaction mechanism, J Mater Chem C. 1 (2013), pp. 3551–3563.
  • S. E. Young, H. Z. Guo, C. Ma, M. R. Kessler, and X. Tan, Thermal analysis of phase transitions in Perovskite electroceramics, J. Therm. Anal. Calorim. 115 (2014), pp. 587–593.
  • S. Layek, and H.C. C. Verma, Magnetic and dielectric properties of multiferroic BiFeO3 nanoparticles synthesized by a novel citrate combustion method, Adv. Mat. Lett. 3 (2012), pp. 533–538.
  • J. Li, Investigation of orthorhombic perovskite La1−xCaxFeO3−y (0 ≤ x ≤ 0.50), Phys. Scr. 45 (1992), pp. 62–64.
  • O. Bartels, K.D. Becker, E. Bucher, and W. Sitte, In-situ Mossbauer spectroscopy and thermogravimetry of La0.2Sr0.8FeO3−Δ and La0.4Sr0.6FeO3−Δ, Solid State Ion. 177 (2006), pp. 1677–1680.
  • F. Gao, P. L. Li, Y. Y. Weng, S. Dong, L. F. Wang, L. Y. Lv, K. F. Wang, J.-M. Liu, and Z. F. Ren, Charge order suppression and weak ferromagnetism in La1/3Sr2/3FeO3 nanoparticles, Appl. Phys. Lett. 91 (2007), pp. 072504–3.
  • R. Mazumder, P. S. Devi, D. Bhattacharya, P. Choudhury, A. Sen, and M. Raja, Ferromagnetism in nanoscale BiFeO3, Appl. Phys. Lett. 91 (2007), pp. 062510.
  • S. Zhou, J. Wang, Q. Xu, and J. Du, The wasp-waisted hysteresis loop and exchange bias in multiferroic BaNiF4, AIP Adv. 7 (2017) pp. 055827–5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.