306
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Study of vacancy defects and their thermal stability in MeV Fe ion irradiated RAFM steel using positron beam Doppler broadening spectroscopy

ORCID Icon, , , , , , , & show all
Pages 38-54 | Received 11 Jan 2018, Accepted 10 Sep 2018, Published online: 03 Oct 2018

References

  • R.L. Klueh and A.T. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater. 371 (2007), pp. 37–52.
  • A.A.F. Tavassoli, E. Diegele, R. Lindau, N. Luzginova, and H. Tanigawa, Current status and recent research achievements in ferritic/martensitic steels, J. Nucl. Mater. 455 (2014), pp. 269–276.
  • B. Raj, K.B.S. Rao, and A.K. Bhaduri, Progress in the development of reduced activation ferritic-martensitic steels and fabrication technologies in India, Fusion Eng. Des. 85 (2010), pp. 1460–1468.
  • K. Laha, S. Saroja, A. Moitra, R. Sandhya, M.D. Mathew, T. Jayakumar, and E. Rajendra Kumar, Development of India-specific RAFM steel through optimization of tungsten and tantalum contents for better combination of impact, tensile, low cycle fatigue and creep properties, J. Nucl. Mater. 439 (2013), pp. 41–50.
  • N. Baluc, D.S. Gelles, S. Jitsukawa, A. Kimura, R.L. Klueh, G.R. Odette, B. van der Schaaf, and J. Yu, Status of reduced activation ferritic/martensitic steel development, J. Nucl. Mater. 367–370, Part A (2007), pp. 33–41.
  • B. Raj, and T. Jayakumar, Development of reduced activation ferritic–martensitic steels and fabrication technologies for Indian test blanket module, J. Nucl. Mater. 417 (2011), pp. 72–76.
  • R. Ramachandran, C. David, R. Rajaraman, B. Panigrahi, and G. Amarendra, Evolution, migration and clustering of helium-vacancy complexes in RAFM steel- depth resolved positron annihilation Doppler broadening study, Philos. Mag. 96 (2016), pp. 2385–2396.
  • S. Jitsukawa, A. Kimura, A. Kohyama, R.L. Klueh, A.A. Tavassoli, B. van der Schaaf, G.R. Odette, J.W. Rensman, M. Victoria, and C. Petersen, Recent results of the reduced activation ferritic/martensitic steel development, J. Nucl. Mater. 329–333, Part A (2004), pp. 39–46.
  • H. Tanigawa, K. Shiba, A. Möslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, and S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, J. Nucl. Mater. 417 (2011), pp. 9–15.
  • L. Tan, Y. Katoh, A.A.F. Tavassoli, J. Henry, M. Rieth, H. Sakasegawa, H. Tanigawa, and Q. Huang, Recent status and improvement of reduced-activation ferritic-martensitic steels for high-temperature service, J. Nucl. Mater. 479 (2016), pp. 515–523.
  • C. Dethloff, E. Gaganidze, and J. Aktaa, Microstructural defects in EUROFER 97 after different neutron irradiation conditions, Nucl. Mater Energy 9 (2016), pp. 471–475.
  • C. Dethloff, E. Gaganidze and J. Aktaa, Quantitative TEM analysis of precipitation and grain boundary segregation in neutron irradiated EUROFER 97, J. Nucl. Mater. 454 (2014), pp. 323–331.
  • L. Tan, T.S. Byun, Y. Katoh, and L.L. Snead, Stability of MX-type strengthening nanoprecipitates in ferritic steels under thermal aging, stress and ion irradiation, Acta Mater. 71 (2014), pp. 11–19.
  • H. Tanigawa, H. Sakasegawa, H. Ogiwara, H. Kishimoto, and A. Kohyama, Radiation induced phase instability of precipitates in reduced-activation ferritic/martensitic steels, J. Nucl. Mater. 367–370 (2007), pp. 132–136.
  • Y. Dai, G.S. Bauer, F. Carsughi, H. Ullmaier, S.A. Maloy, and W.F. Sommer, Microstructure in martensitic steel DIN 1.4926 after 800 MeV proton irradiation, J. Nucl. Mater. 265 (1999), pp. 203–207.
  • C. Zheng, and D. Kaoumi, Radiation-induced swelling and radiation-induced segregation & Precipitation in dual beam irradiated ferritic/martensitic HT9 steel, Mater. Charact. 134 (2017), pp. 152–162.
  • H. Tanigawa, H. Sakasegawa, N. Hashimoto, R.L. Klueh, M. Ando, and M.A. Sokolov, Irradiation effects on precipitation and its impact on the mechanical properties of reduced-activation ferritic/martensitic steels, J. Nucl. Mater. 367–370, Part A (2007), pp. 42–47.
  • E. Gaganidze, C. Petersen, E. Materna-Morris, C. Dethloff, O.J. Weiß, J. Aktaa, A. Povstyanko, A. Fedoseev, O. Makarov, and V. Prokhorov, Mechanical properties and TEM examination of RAFM steels irradiated up to 70 dpa in BOR-60, J. Nucl. Mater. 417 (2011), pp. 93–98.
  • I. Sacksteder, H.C. Schneider, and E. Materna-Morris, Determining irradiation damage and recovery by instrumented indentation in RAFM steel, J. Nucl. Mater. 417 (2011), pp. 127–130.
  • T.R. Allen, J. Gan, J.I. Cole, M.K. Miller, J.T. Busby, S. Shutthanandan, and S. Thevuthasan, Radiation response of a 9 chromium oxide dispersion strengthened steel to heavy ion irradiation, J. Nucl. Mater. 375 (2008), pp. 26–37.
  • H. Ogiwara, H. Sakasegawa, H. Tanigawa, M. Ando, Y. Katoh, and A. Kohyama, Void swelling in reduced activation ferritic/martensitic steels under ion-beam irradiation to high fluences, J. Nucl. Mater. 307–311, Part 1 (2002), pp. 299–303.
  • G. Amarendra, B.K. Panigrahi, S. Abhaya, C. David, R. Rajaraman, K.G.M. Nair, C.S. Sundar, and B. Raj, Positron beam studies of void swelling in ion irradiated Ti-modified stainless steel, Appl. Surf. Sci. 255 (2008), pp. 139–141.
  • C. David, B.K. Panigrahi, G. Amarendra, S. Abhaya, S. Balaji, A.K. Balamurugan, K.G.M. Nair, B. Viswanathan, C.S. Sundar, and B. Raj, Void swelling in ion irradiated (15Ni–14Cr), Ti-modified stainless steel: A study using positron annihilation and step height measurements, Surf. Coat. Technol. 203 (2009), pp. 2363–2366.
  • M.P. Short, D.R. Gaston, M. Jin, L. Shao, and F.A. Garner, Modeling injected interstitial effects on void swelling in self-ion irradiation experiments, J. Nucl. Mater. 471 (2016), pp. 200-207.
  • L.K. Mansur, and M.H. Yoo, Advances in the theory of swelling in irradiated metals and alloys, J. Nucl. Mater. 85 (1979), pp. 523–532.
  • J. Wang, M.B. Toloczko, N. Bailey, F.A. Garner, J. Gigax, and L. Shao, Modification of SRIM-calculated dose and injected ion profiles due to sputtering, injected ion buildup and void swelling, Nucl. Instrum. Methods Phys. Res. Sect. B 387 (2016), pp. 20–28.
  • L. Shao, C.C. Wei, J. Gigax, A. Aitkaliyeva, D. Chen, B.H. Sencer, and F.A. Garner, Effect of defect imbalance on void swelling distributions produced in pure iron irradiated with 3.5 MeV self-ions, J. Nucl. Mater. 453 (2014), pp. 176–181.
  • C.W. He, M.F. Barthe, P. Desgardin, S. Akhmadaliev, M. Behar, and F. Jomard, Positron studies of interaction between yttrium atoms and vacancies in bcc iron with relevance for ODS nanoparticles formation, J. Nucl. Mater. 455 (2014), pp. 398-401.
  • J.F. Ziegler, The Stopping and Range of Ions in Matter, Available at www.srim.org.
  • B. Mario, Thin Film Analysis by X-ray Scattering, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany, 2006.
  • Á. Révész, T. Ungár, A. Borbély, and J. Lendvai, Dislocations and grain size in ball-milled iron powder, Nanostruct. Mater. 7 (1996), pp. 779–788.
  • T. Ungár and G. Tichy, The Effect of Dislocation Contrast on X-Ray Line Profiles in Untextured Polycrystals, physica status solidi (a) 171 (1999), pp. 425–434.
  • W.C. Oliver, and G.M. Pharr, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004), pp. 3–20.
  • G. Amarendra, B. Viswanathan, G.V. Rao, J. Parimala, and B. Purniah, Variable energy slow positron beams for depth resolved defect spectroscopy in thin film structures, Curr. Sci. 73 (1997), pp. 409–417.
  • R. Krause-Rehberg, and H.S. Leipner, Positron Annihilation in Semiconductors: Defect Studies, Springer, Berlin, 1999.
  • A. van Veen, H. Schut, M. Clement, J.M.M. de Nijs, A. Kruseman, and M.R. Ijpma, VEPFIT applied to depth profiling problems, Appl. Surf. Sci. 85 (1995), pp. 216–224.
  • A. Vehanen, P. Hautojärvi, J. Johansson, J. Yli-Kauppila, and P. Moser, Vacancies and carbon impurities in alpha - iron: Electron irradiation, Phys. Rev. B 25 (1982), pp. 762–780.
  • A.D. Brailsford, and L.K. Mansur, Effect of self-ion injection in simulation studies of void swelling, J. Nucl. Mater. 71 (1977), pp. 110–116.
  • F.A. Garner, Impact of the injected interstitial on the correlation of charged particle and neutron-induced radiation damage, J. Nucl. Mater. 117 (1983), pp. 177–197.
  • R. Ramachandran, C. David, R. Rajaraman, S. Abhaya, B.K. Panigrahi, and G. Amarendra, Isochronal annealing studies on 1.1 MeV Fe ion irradiated RAFM steel using variable energy slow positron beam, AIP Conference Proceedings 1832 (2017), p. 080045.
  • V. Ragunanthan, S. Haribabu, V. A. Chirayath, R. Rajaraman, G. Amarendra, S. Saroja, C. S. Sundar, Ana Alamo and Baldev Raj, Positron annihilation studies on 9Cr reduced activation ferritic/martensitic steels, physica status solidi (c) 6 (2009), pp. 2307–2309.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.