87
Views
0
CrossRef citations to date
0
Altmetric
Part B: Condensed Matter Physics

Theory prediction of the electronic structure, mechanical and thermodynamic properties of Ca5Pd6Ge6 under pressure

&
Pages 116-129 | Received 17 Oct 2017, Accepted 20 Aug 2018, Published online: 09 Oct 2018

References

  • R. Nesper, Bonding patterns in intermetallic compounds, Angew. Chem. Int. Ed. 30 (1991), pp. 789–817. doi: 10.1002/anie.199107891
  • R.J. Cava, H. Takagi, H.W. Zandbergen, J.J. Krajewski, W.F. Peck, T. Siegrist, B. Batlogg, R.B. van Dover, R.J. Felder, K. Mizuhashi, J.O. Lee, H. Eisaki, and S. Uchida, Superconductivity in the quaternary intermetallic compounds LnNi2B2C, Nature 367 (1994), pp. 252–253.
  • F. Studt, F. Abild-Pedersen, T. Bligaard, R.Z. Sørensen, C.H. Christensen, and J.K. Nørskov, Identification of non-precious metal alloy catalysts for selective hydrogenation of acetylene, Science 320 (2008), pp. 1320–1322. doi: 10.1126/science.1156660
  • S.M. Kauzlarich, S.R. Brown, and G.J. Snyder, Zintl phases for thermoelectric devices, Dalton Trans. (2007), pp. 2099–2107. doi:10.1039/b702266b.
  • I. Doverbratt, S. Ponou, S. Lidin, and D.C. Fredrickson, Ca10pt7tt3 (Tt = Si, Ge): new platinide phases featuring electron-rich 4c-6e bonded [Pt7Tt3]20− intermetalloid clusters, Inorg. Chem. 51 (2012), pp. 11980–11985. doi: 10.1021/ic301867q
  • I. Doverbratt, S. Ponou, Y.M. Zhang, S. Lidin, and G.J. Miller, Linear metal chains in Ca2M2X (M = Pd, Pt; X = Al, Ge): origin of the pairwise distortion and its role in the structure stability, Chem. Mater. 27 (2015), pp. 304–315. doi: 10.1021/cm503985h
  • E.Y. Zakharova, S.M. Kazakov, and A.N. Kuznetsov, A new representative of the cubic parkerites family: synthesis, crystal and electronic structure of Pt3Bi2Se2, J. Alloys Compd. 651 (2015), pp. 193–199. doi: 10.1016/j.jallcom.2015.08.133
  • D.C. Fredrickson, I. Doverbratt, S. Ponou, and S. Lidin, Bonding schemes for polar intermetallics through molecular orbital models: Ca-supported Pt-Pt bonds in Ca10Pt7Si3, Crystals (Basel) 3 (2013), pp. 504–516. doi: 10.3390/cryst3030504
  • S. Ponou and G. J. Miller, Synergistic geometrical and electronic features in the intermetallic phases Ca2AgM2, Ca2MgM2, and Ca2GaM2 (M = Pd, Pt), Z. Anorg. Allg. Chem. 641(1) (2015), pp. 1069–1079. doi: 10.1002/zaac.201500090
  • I. Doverbratt, S. Ponou, and S. Lidin, Ca2pd3ge, a new fully ordered ternary laves phase structure, J. Solid State Chem. 197 (2013), pp. 312–316. doi: 10.1016/j.jssc.2012.09.003
  • G. Venturini and B. Malaman, X-ray single crystal refinements on some RT2Ge2 compounds (R = Ca, Y, La, Nd, U; T = Mn-Cu, Ru-Pd): evolution of the chemical bonds, J. Alloys Compd. 235 (1996), pp. 201–209. doi: 10.1016/0925-8388(95)02140-X
  • R. Weihrich and I. Anusca, Halfantiperovskites II: on the crystal structure of Pd3Bi2S2, Z. Anorg. Allg. Chem. 632 (2006), pp. 335–342. doi: 10.1002/zaac.200500336
  • A. Vymazalová, F. Laufek, A.V. Kristavchuk, D.A. Chareev, and M. Drábek, The system Ag-Pd-Te: phase relations and mineral assemblages, Mineral. Mag. 79(7) (2015), pp. 1813–1832. doi: 10.1180/minmag.2015.079.7.11
  • F. Laufek, A. Vymazalová, M. Drábek, J. Navrátil, T. Plechácek, and J. Drahokoupil, Crystal structure and transport properties of Pd5HgSe, Solid State Sci. 14 (2012), pp. 1476–1479. doi: 10.1016/j.solidstatesciences.2012.08.019
  • F. Laufek, A. Vymazalová, D.A. Chareev, A.V. Kristavchuk, Q. Lin, J. Drahokoupil, and T.M. Vasilchikova, Crystal and electronic structure study of AgPd3Se, J. Solid State Chem. 184 (2011), pp. 2794–2798. doi: 10.1016/j.jssc.2011.08.019
  • A. Götze, P. Urban, O. Oeckler, and H. Kohlmann, Synthesis and crystal structure of Pd5InSe, Z. Naturforsch. 69 (2014), pp. 417–422.
  • A. Tursina, S. Nesterenko, Y. Seropegin, H. Noёl, and D. Kaczorowski. Synthesis, crystal structure and magnetic properties of the new ternary indide SmPd2In4, Chem. Met. Alloys 3 (2010), pp. 147–154.
  • F. Bachhuber, A. Krach, A. Furtner, T. Söhnel, P. Peter, J. Rothballer, and R. Weihrich, Phase stabilities of pyrite-related MTCh compounds (M = Ni, Pd, Pt; T = Si, Ge, Sn, Pb; Ch = S, Se, Te): A systematic DFT study, J. Solid State Chem. 226 (2015), pp. 29–35. doi: 10.1016/j.jssc.2015.01.028
  • F. Laufek, A. Vymazalová, M. Drábek, M. Dušek, J. Navrátil, and E. Černošková, The crystal structure of Pd3HgTe3, the synthetic analogue of temagamite, Eur. J. Mineral. 28 (2016), pp. 825-834. doi: 10.1127/ejm/2016/0028-2547
  • F. Laufek, A. Vymazalová, M. Drabek, J. Navrátil, and J. Drahokoupil, Synthesis and crystal structure of tischendorfite, Pd8Hg3Se9, Eur. J. Mineral. 26 (2014), pp. 157–162. doi: 10.1127/0935-1221/2013/0025-2345
  • I. Doverbratt, S. Ponou, F. Wang, and S. Lidin, Synthesis, crystal structure, and bonding analysis of the hypoelectronic cubic phase Ca5Pd6Ge6, Inorg. Chem. 54 (18) (2015), pp. 9098–9104. doi: 10.1021/acs.inorgchem.5b01528
  • D. Vanderbilt, Soft self-consistent pseudopotentials in a generalized eigenvalue formalism, Phys. Rev. B 41(1990), pp. 7892–7895. doi: 10.1103/PhysRevB.41.7892
  • S.J. Clark, M.D. Segall, C.J. Pickard, P.J. Hasnip, M.J. Probert, K. Refson, and M. C. Payne, First principles methods using CASTEP, Z. Kristallogr. 220 (2005), pp. 567–570.
  • J.P. Perdew, K. Burke, and M. Ernzerhof. Generalized gradient approximation made simple, Phys. Rev. Lett. 77 (1996), pp. 3865–3868. doi: 10.1103/PhysRevLett.77.3865
  • C.G. Broyden, The convergence of a class of double-rank minimization algorithms. II. The new algorithm, J. Inst. Math. Appl. 6 (1970), pp. 222–231. doi: 10.1093/imamat/6.3.222
  • R. Fletcher, A new approach to variable metric algorithms, Comput. J. 13 (1970), pp. 317–322. doi: 10.1093/comjnl/13.3.317
  • D. Goldfarb, A family of variable-metric methods derived by variational means, Math. Comput. 24 (1970), pp. 23–26. doi: 10.1090/S0025-5718-1970-0258249-6
  • D.F. Shanno, Conditioning of quasi-newton methods for function minimization, Math. Comput. 24 (1970), pp. 647–656. doi: 10.1090/S0025-5718-1970-0274029-X
  • M.A. Blanco, E. Francisco, and V. Luaña, GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model, Comput. Phys. Commun. 158 (2004), pp. 57–72. doi: 10.1016/j.comphy.2003.12.001
  • M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press, New York and London, 1954.
  • R. Hill, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. A. 65 (1952), pp. 349–354. doi: 10.1088/0370-1298/65/5/307
  • W.Y. Tian and H.C. Chen, Insight into the mechanical, thermodynamics and superconductor properties of NbRuB via first-principles calculation, Sci. Rep. 6 (2016), p. 19055. doi: 10.1038/srep19055
  • F. Birch, Finite elastic strain of cubic crystals, Phys. Rev. 71 (1947), pp. 809–824. doi: 10.1103/PhysRev.71.809
  • G. VSin’ko and N.A. Smirnov, Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure, J. Phys: Condens. Matter. 14 (2002), pp. 6989–7005.
  • S.F. Pugh, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond., Edinb., Dublin Philos. Mag. J. Sci. Ser. 45 (45) (1954), pp. 823–843.
  • D.G. Pettifor, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Tech. 8 (1992), pp. 345–349. doi: 10.1179/mst.1992.8.4.345
  • J. Haines, J. M. Léger, and G. Bocquillon, Synthesis and design of superhard materials, Annu. Rev. Mater. Res. 31 (2001), pp. 1–23.
  • J.F. Nye, Physical Properties of Crystals, Oxford University Press, New York, 1985, p. 145.
  • S.I. Ranganathan and M. Ostoja-Starzewski, Universal elastic anisotropy index, Phys. Rev. Lett. 101 (2008), p. 055504. doi: 10.1103/PhysRevLett.101.055504
  • O.L. Anderson, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids 24 (1963), pp. 909–917. doi: 10.1016/0022-3697(63)90067-2
  • J.P. Long, C.Z. Shu, L.J. Yang, and M. Yang, Predicting crystal structures and physical properties of novel superhard p-BN under pressure via first-principles investigation, J. Alloys Compd. 644 (2015), pp. 638–644. doi: 10.1016/j.jallcom.2015.04.229

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.