1,126
Views
0
CrossRef citations to date
0
Altmetric
Part A: Materials Science

Micromechanical modelling of coupled crystal plasticity and hydrogen diffusion

, &
Pages 92-115 | Received 30 May 2018, Accepted 27 Sep 2018, Published online: 08 Oct 2018

References

  • H.K. Birnbaum and P. Sofronis, Hydrogen-enhanced localized plasticity – A mechanism for hydrogen-related fracture, Mater. Sci. Eng. 176 (1994), pp. 191–202. doi: 10.1016/0921-5093(94)90975-X
  • D.S. Shih, I.M. Robertson, and H.K. Birnbaum, Hydrogen embrittlement of α titanium: In situ tem studies, Acta Metall. 36 (1988), pp. 111–124. doi: 10.1016/0001-6160(88)90032-6
  • R. Dutton, K. Nuttall, M.P. Puls, and L.A. Simpson, Mechanisms of hydrogen induced delayed cracking in hydride forming materials, Metall. Mater. Trans. A 8 (1977), pp. 1553–1562. doi: 10.1007/BF02644858
  • H.J. Grabke and E. Riecke, Absorption and diffusion of hydrogen in steels, Mater. Technol. 34 (2000), p. 331.
  • A.H.M. Krom and A.D. Bakker, Hydrogen trapping models in steel, Metall. Mater. Trans. B 31 (2000), pp. 1475–1482. doi: 10.1007/s11663-000-0032-0
  • A.J. Kumnick and H.H. Johnson, Deep trapping states for hydrogen in deformed iron, Acta Metall. 28 (1980), pp. 33–39. doi: 10.1016/0001-6160(80)90038-3
  • R.A. Oriani, The diffusion and trapping of hydrogen in steel, Acta Metall. 18 (1970), pp. 147–157. doi: 10.1016/0001-6160(70)90078-7
  • J. Bouhattate, E. Legrand, and X. Feaugas, Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: I – consequences of trapping, Int. J. Hydrogen Energy 36 (2011), pp. 12644–12652. doi: 10.1016/j.ijhydene.2011.06.143
  • C. Hurley, F. Martin, L. Marchetti, J. Chene, C. Blanc, and E. Andrieu, Numerical modeling of thermal desorption mass spectroscopy (TDS) for the study of hydrogen diffusion and trapping interactions in metals, Int. J. Hydrogen Energy 40 (2015), pp. 3402–3414. doi: 10.1016/j.ijhydene.2015.01.001
  • E.J. Song, D.-W. Suh, and H. Bhadeshia, Theory for hydrogen desorption in ferritic steel, Comput. Mater. Sci. 79 (2013), pp. 36–44. doi: 10.1016/j.commatsci.2013.06.008
  • F.D. Fischer, G. Mori, and J. Svoboda, Modelling the influence of trapping on hydrogen permeation in metals, Corros. Sci. 76 (2013), pp. 382–389. doi: 10.1016/j.corsci.2013.07.010
  • E. Legrand, X. Feaugas, and J. Bouhattate, Generalized model of desorption kinetics: Characterization of hydrogen trapping in a homogeneous membrane, Int. J. Hydrogen Energy 39 (2014), pp. 8374–8384. doi: 10.1016/j.ijhydene.2014.03.191
  • E. Legrand, A. Oudriss, C. Savall, J. Bouhattate, and X. Feaugas, Towards a better understanding of hydrogen measurements obtained by thermal desorption spectroscopy using FEM modeling, Int. J. Hydrogen Energy 40 (2015), pp. 2871–2881. doi: 10.1016/j.ijhydene.2014.12.069
  • A. McNabb and P.K. Foster, A new analysis of the diffusion of hydrogen in iron and ferritic steels, Trans. Met. Soc. AIME 227 (1963), pp. 618–627.
  • P. Sofronis and R.M. McMeeking, Numerical analysis of hydrogen transport near a blunting crack tip, J. Mech. Phys. Solids 37 (1989), pp. 317–350. doi: 10.1016/0022-5096(89)90002-1
  • A.H.M. Krom, R.W.J. Koers, and A. Bakker, Hydrogen transport near a blunting crack tip, J. Mech. Phys. Solids 47 (1999), pp. 971–992. doi: 10.1016/S0022-5096(98)00064-7
  • A. Taha and P. Sofronis, A micromechanics approach to the study of hydrogen transport and embrittlement, Eng. Fract. Mech. 68 (2001), pp. 803–837. doi: 10.1016/S0013-7944(00)00126-0
  • J. Toribio, Role of hydrostatic stress in hydrogen diffusion in pearlitic steel, J. Mater. Sci. 28 (1993), pp. 2289–2298. doi: 10.1007/BF01151655
  • V. Olden, C. Thaulow, R. Johnsen, E. Østby, and T. Berstad, Application of hydrogen influenced cohesive laws in the prediction of hydrogen induced stress cracking in 25%Cr duplex stainless steel, Eng. Fract. Mech. 75 (2008), pp. 2333–2351. doi: 10.1016/j.engfracmech.2007.09.003
  • O. Barrera, E. Tarleton, H.W. Tang, and A.C.F. Cocks, Modelling the coupling between hydrogen diffusion and the mechanical behaviour of metals, Comput. Mater. Sci. 122 (2016), pp. 219–228. doi: 10.1016/j.commatsci.2016.05.030
  • C.-S. Oh, Y.-J. Kim, and K.-B. Yoon, Coupled analysis of hydrogen transport using ABAQUS, J. Solid Mech. Mater. Eng. 4 (2010), pp. 908–917. doi: 10.1299/jmmp.4.908
  • I. Aubert, N. Saintier, and J.-M. Olive, Crystal plasticity computation and atomic force microscopy analysis of the internal hydrogen-induced slip localization on polycrystalline stainless steel, Scr. Mater. 66 (2012), pp. 698–701. doi: 10.1016/j.scriptamat.2012.01.019
  • I. Aubert, N. Saintier, J.-M. Olive, and F. Plessier, A methodology to obtain data at the slip-band scale from atomic force microscopy observations and crystal plasticity simulations. Application to hydrogen-induced slip localization on AISI 316L stainless steel, Acta Mater. 104 (2016), pp. 9–17. doi: 10.1016/j.actamat.2015.11.042
  • Y. Charles, H.T. Nguyen, and M. Gaspérini, Comparison of hydrogen transport through pre-deformed synthetic polycrystals and homogeneous samples by finite element analysis, Int. J. Hydrogen Energy 42 (2017), pp. 20336–20350. doi: 10.1016/j.ijhydene.2017.06.016
  • N. Yazdipour, A.J. Haq, K. Muzaka, and E. V Pereloma, 2D modelling of the effect of grain size on hydrogen diffusion in X70 steel, Comput. Mater. Sci. 56 (2012), pp. 49–57. doi: 10.1016/j.commatsci.2012.01.003
  • M. Dadfarnia, M.L. Martin, A. Nagao, P. Sofronis, and I.M. Robertson, Modeling hydrogen transport by dislocations, J. Mech. Phys. Solids 78 (2015), pp. 511–525. doi: 10.1016/j.jmps.2015.03.002
  • S. Sun, K. Shiozawa, J. Gu, and N. Chen, Investigation of deformation field and hydrogen partition around crack tip in fcc single crystal, Metall. Mater. Trans. A 26 (1995), pp. 731–739. doi: 10.1007/BF02663922
  • D.N. Ilin, N. Saintier, J.-M. Olive, R. Abgrall, and I. Aubert, Simulation of hydrogen diffusion affected by stress-strain heterogeneity in polycrystalline stainless steel, Int. J. Hydrogen Energy 39 (2014), pp. 2418–2422. doi: 10.1016/j.ijhydene.2013.11.065
  • T.P. Swiler, V. Tikare, and E.A. Holm, Heterogeneous diffusion effects in polycrystalline microstructures, Mater. Sci. Eng. A 238 (1997), pp. 85–93. doi: 10.1016/S0921-5093(97)00441-3
  • V. Lacaille, C. Morel, E. Feulvarch, G. Kermouche, and J.-M. Bergheau, Finite element analysis of the grain size effect on diffusion in polycrystalline materials, Comput. Mater. Sci. 95 (2014), pp. 187–191. doi: 10.1016/j.commatsci.2014.07.026
  • E. Legrand, J. Bouhattate, X. Feaugas, S. Touzain, H. Garmestani, M. Khaleel, and D.S. Li, Numerical analysis of the influence of scale effects and microstructure on hydrogen diffusion in polycrystalline aggregates, Comput. Mater. Sci. 71 (2013), pp. 1–9. doi: 10.1016/j.commatsci.2013.01.018
  • S. Jothi, T.N. Croft, L. Wright, A. Turnbull, and S.G.R. Brown, Multi-phase modelling of intergranular hydrogen segregation/trapping for hydrogen embrittlement, Int. J. Hydrogen Energy 40 (2015), pp. 15105–15123. doi: 10.1016/j.ijhydene.2015.08.093
  • S. Jothi, T.N. Croft, and S.G.R. Brown, Coupled macroscale-microscale model for hydrogen embrittlement in polycrystalline materials, Int. J. Hydrogen Energy 40 (2015), pp. 2882–2889. doi: 10.1016/j.ijhydene.2014.12.068
  • LAMMPS Molecular Dynamics Simulator.
  • M. Boeff, Micromechanical modelling of fatigue crack initiation and growth, Thesis, Ruhr Universität Bochum, Germany, 2016.
  • CUBIT version 13.2, Sandia National Laboratories, 2013. Sandia National Laboratories.
  • E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen, Arch. Ration. Mech. Anal. 4 (1959), pp. 273–334. doi: 10.1007/BF00281393
  • E.H. Lee and D.T. Liu, Finite-strain elastic – Plastic theory with application to plane-wave analysis, J. Appl. Phys. 38 (1967), pp. 19–27. doi: 10.1063/1.1708953
  • E.H. Lee, Elastic-plastic deformation at finite strains, J. Appl. Mech. 36 (1969), pp. 1–6. doi: 10.1115/1.3564580
  • J. Bonet and R.D. Wood, Nonlinear Continuum Mechanics for Finite Element Analysis, Cambridge University Press, Cambridge, 2008.
  • A. Koester, A. Ma, and A. Hartmaier, Atomistically informed crystal plasticity model for body-centered cubic iron, Acta Mater. 60 (2012), pp. 3894–3901. doi: 10.1016/j.actamat.2012.03.053
  • F. Roters, P. Eisenlohr, L. Hantcherli, D.D. Tjahjanto, T.R. Bieler, and D. Raabe, Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications, Acta Mater. 58 (2010), pp. 1152–1211. doi: 10.1016/j.actamat.2009.10.058
  • J.R. Rice, Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity, J. Mech. Phys. Solids 19 (1971), pp. 433–455. doi: 10.1016/0022-5096(71)90010-X
  • J.W. Hutchinson, Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. R. Soc. London A Math. Phys. Eng. Sci. 348 (1976), pp. 101–127. doi: 10.1098/rspa.1976.0027
  • C.O. Frederick and P.J. Armstrong, A mathematical representation of the multiaxial Bauschinger effect, Mater. High Temp. 24 (2007), pp. 1–26. doi: 10.3184/096034007X207589
  • M. Boeff, H. ul Hassan, and A. Hartmaier, Micromechanical modeling of fatigue crack initiation in polycrystals, J. Mater. Res. 32 (2017), pp. 4375–4386. doi: 10.1557/jmr.2017.384
  • C. Moriconi, G. Hénaff, and D. Halm, Cohesive zone modeling of fatigue crack propagation assisted by gaseous hydrogen in metals, Int. J. Fatigue 68 (2014), pp. 56–66. doi: 10.1016/j.ijfatigue.2014.06.007
  • F. Farukh, L.G. Zhao, N.C. Barnard, M.T. Whittaker, and G. McColvin, Computational modelling of full interaction between crystal plasticity and oxygen diffusion at a crack tip, Theor. Appl. Fract. Mech. (2017).
  • Y. Charles, H.T. Nguyen, and M. Gaspérini, FE simulation of the influence of plastic strain on hydrogen distribution during an U-bend test, Int. J. Mech. Sci. 120 (2017), pp. 214–224. doi: 10.1016/j.ijmecsci.2016.11.017
  • K. Inal, J.L. Lebrun, and M. Belassel, Second-order stresses and strains in heterogeneous steels: Self-consistent modeling and X-ray diffraction analysis, Metall. Mater. Trans. A 35 (2004), pp. 2361–2369. doi: 10.1007/s11661-006-0216-6
  • S. Mahmoody, Micromechanical Modeling of Dual-Phase Steel Using a Rate-Dependet Crystal Plasticity Model, McGill University, Montreal, 2007.
  • R.J.M. Smit, W.A.M. Brekelmans, and H.E.H. Meijer, Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling, Comput. Methods Appl. Mech. Eng. 155 (1998), pp. 181–192. doi: 10.1016/S0045-7825(97)00139-4
  • P. Novak, R. Yuan, B.P. Somerday, P. Sofronis, and R.O. Ritchie, A statistical, physical-based, micro-mechanical model of hydrogen-induced intergranular fracture in steel, J. Mech. Phys. Solids 58 (2010), pp. 206–226. doi: 10.1016/j.jmps.2009.10.005
  • L.B. Peral, A. Zafra, C. Rodríguez, and J. Belzunce, Evaluation of strength and fracture toughness of ferritic high strength steels under hydrogen environments, Procedia Struct. Integr. 5 (2017), pp. 1275–1282. doi: 10.1016/j.prostr.2017.07.105
  • L. Vergani, G. Gobbi, and C. Colombo, A numerical model to study the hydrogen embrittlement effect on Low-alloy steels, in Advances in Fracture and Damage Mechanics XII, 577 (2014), pp. 513–516.
  • M.A.V. Devanathan and Z. Stachurski, The adsorption and diffusion of electrolytic hydrogen in palladium, Proc. R. Soc. London A Math. Phys. Eng. Sci. 270 (1962), pp. 90–102. doi: 10.1098/rspa.1962.0205
  • Y. Huang, A. Nakajima, A. Nishikata, and T. Tsuru, Effect of mechanical deformation on permeation of hydrogen in iron, ISIJ Int. 43 (2003), pp. 548–554. doi: 10.2355/isijinternational.43.548
  • V. Olden, A.S. Hauge, and O.M. Akselsen, The influence of plastic strain on the effective hydrogen diffusion coefficient and trapping in base metal and weld simulated heat affected zone of an X70 pipeline steel, The Twenty-second International Offshore and Polar Engineering Conference,17–22 June, Rhodes, Greece, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.